Energy Smart Housing Manual

Your guide to creating an Energy Smart house
Foreword

Welcome to the Energy Smart Housing Manual.

This is your guide for designing and constructing a comfortable, energy efficient home.

Informed by research, data and insights the Energy Smart Manual has been developed by Sustainability Victoria to provide homeowners, renters, designers, builders, architects, thermal performance assessors and students with good design principles:

› to save money – making a better choice of your home’s orientation can reduce heating and cooling requirements by 15%. ‘Air tight’ homes are cheaper to heat and cool with high levels of insulation and draught proofing resulting in lower heating and cooling – 60-70% lower energy bills.

› to be healthier to live in - with comfortable stable internal thermal temperatures, warm in winter and cool in summer. Health risks for occupants are reduced with less exposure to more extreme temperate ranges (high or low temperatures) and toxins from poor indoor climate.

› to reduce greenhouse gas emissions – reductions of 5 to 8 1/2 tonnes per year can be achieved when compared to a home built to meet current industry standards.

The Energy Smart Housing Manual contains advice on how to determine the best orientation for a new home and how shading can assist in making an existing home more comfortable. It also contains advice about windows, insulation, thermal mass and how to prevent air leakage whilst maintaining healthy indoor air quality.

Victoria is home1 to 6.6 million people and it is expected to grow to between 9-11 million people by 20502. In 2018-19 Greater Melbourne grew by more than 113,000 people.

The Victorian Government has committed to zero net emissions by 2050, and to achieve this goal it is critical that the forecast 2 million new dwellings built between now and 2050, are affordable, comfortable and sustainable.

On behalf of Sustainability Victoria, I hope the Energy Smart Housing Manual provides you with practical informative advice to ensure your home saves you money, is healthier to live in and contributes to Victoria being zero net emissions by 2050.

Claire Ferres-Miles
Chief Executive Officer
Sustainability Victoria,
September 2020

1 ABS, 2020 “3101.0 - Australian Demographic Statistics, Jun 2019”
2 ABS, 2020 “3222.0 - Population Projections, Australia, 2017 (base) - 2066”
01 / Overview: Designing an Energy Smart house

This section draws together the key principles explained in later chapters and shows how these principles impact the way in which you design your house and help enhance the energy efficiency of your home.
Below is a quick summary of the content of chapters 2-8:

02 / Sun, Climate and Comfort
- Explains how sun position varies throughout the year and how you can examine this using software tools.
- Shows the impact of the different climates in Victoria have on the amount of heating and cooling you need.
- The aim of designing an energy efficient house is to provide comfortable conditions without the need for large amounts of purchased energy. This section explains what influences human comfort and how understanding this helps you to design a better home.

03 / Siting and Solar Access
- Provides guidelines on how to site your house on the block to protect access to the sun for north windows in winter and roof surfaces year round for Solar Hot Water and Photovoltaic panels.

04 / Windows
- Shows how the intensity of the sun varies on windows and skylights of various orientations throughout the year and how you can use this knowledge to design a better home.
- Explains the Window Energy Rating Scheme (WERS) and how you can use it to select the windows that will improve the energy efficiency of your house.
- Provides guidelines on selecting the right window size and how best to shade windows in summer.
- Explains the impact of curtains on the energy efficiency of your windows.

05 / Insulation
- Explains the principles of heat flow so you can understand how various insulation products work and how to compare their thermal resistance (R value).
- Provides information about the different insulation materials available in the market and how these can be used in a building.
- Shows the recommended minimum insulation levels recommended by the National Construction Code and explains how good energy efficient design affects the amount of insulation you need.
- Provides guidance on how to install insulation to ensure that the performance of the product is maintained.
- Explains important information relating to fire safety and issues around moisture control.

06 / Thermal Mass
- Thermal mass is higher in dense heavyweight materials like bricks and concrete. This chapter explains how the thermal mass affects the energy efficiency of your house.
- Outlines some of the downsides to using high thermal mass materials under some conditions.
- Provides examples of how thermal mass affects thermal comfort in Victorian housing.
- Explains some important technical issues around how to make best use of thermal mass, how different floor coverings and their colour affect the performance of slab on ground floors, and
- Gives some guidance on the use of non-conventional construction systems which have high levels of thermal mass.

07 / Air Leakage and Air Movement
- Explains where outside air can leak into your house, how this affects energy efficiency and what you can do to seal these unwanted air leakage sites.
- Gives example of how to use a Blower Door test to identify air leakage sites as well as some DIY tips.
- Shows the amount of air that typically leaks through various air leakage sites to help you prioritise which to seal first.
- Explains the potential risks of reducing air leakage by too much.
- Explains how to cool down your house in summer by providing good cross ventilation and air movement to minimise the amount of air conditioning you need.

08 / Case Study
- Explains how a house which closely follows the principles in this manual can reduce the cost of 6 star compliance or achieve even higher efficiency levels.
Using these guidelines

Using this manual

In the past energy efficient house design guidelines relied on adhering to fixed rules of thumb. Experience with using NatHERS house energy rating tools (e.g. FirstRate5) has shown that many of these old rules of thumb had significant limitations e.g. the old passive solar design rules of thumb about eave depth for north facing windows blocked too much sun during cold weather in spring and autumn. This new edition of the Energy Smart Housing manual has therefore been updated to reflect experience with using energy rating tools.

The guidelines shown in this manual will help designers and energy assessors using NatHERS tools to fine tune the design of a house to minimise the additional cost of making the structure of a house energy efficient. It may not be possible for every house design to follow every guideline shown in this manual due to site constraints e.g. adjacent buildings may overshadow your north windows in winter which will mean you can't heat your home using free heat from the sun. This does not mean that it is no longer possible to achieve an energy efficient design.

NatHERS house energy rating tools allow you to compensate for those elements of house design which are less than ideal. These guidelines can be used to help you do this e.g. if you have overshadowed north windows and so can't heat your house in winter with free heat from the sun, then you can minimise heat losses by using double glazing (Chapter 4) and higher levels of insulation in the walls, floor and ceiling (Chapter 5).

Using energy ratings gives much greater design flexibility than adhering to rules of thumb. The design guidelines developed for this manual show best practice and are not intended to be used as a new rigid rules of thumb. If your eave design does not meet the suggestions shown in Chapter 4, or you house can not achieve the setback from buildings to the north described in Chapter 3, it can still be energy efficient, but it will require more careful design.

While energy rating provides a more flexible approach that provides a much better measure of actual performance, energy ratings also have limitations. For example:

- Energy ratings are effectively a whole of house average performance. This means that some rooms may perform poorly provided that others perform well.
- The rating does not provide minimum performance separately for heating and cooling but aggregates heating and cooling. This means that a single star rating level still provides for a range of performance levels for heating and cooling.

The guidelines in this manual will help readers to ensure better performance across all rooms in the house and a better balance of heating and cooling performance than the current regulated minimums.

Apartment design

This manual is primarily written about the design of detached houses (or Class 1 dwellings in the National Construction Code (NCC)). Apartments (or NCC Class 2) have significant thermal performance differences to houses:

- They may have large areas of their walls, floors and ceiling shared with other elements this means that heat losses in winter will be much lower than a detached house,
- They are further off the ground than detached houses which means they are exposed to higher wind speeds. Apartments on upper floors will therefore have a larger heat losses through windows and from air leakage,
- Apartments are usually constructed with high thermal mass walls, floors and ceilings, and
- They may only have one or two faces which contain windows may be much larger than found in detached houses. This limits the ability to use north facing windows in living areas to reduce winter heating or leave no alternative but to use west facing windows which have higher summer heat gains.

These differences will generally mean that apartments can have much lower heating requirements than detached houses. Because the NatHERS star rating works by adding heating and cooling loads together to achieve a star rating it can mean that cooling loads are much higher in apartments than in detached houses. To address this situation the Victorian Government’s Better Apartments program have developed separate cooling load limits in addition to the minimum star rating which must be met in addition to the rating requirement for Class 2 dwellings. The NCC has also developed separate heating and cooling load limits for all dwellings. The cooling load limits were developed to eliminate the worst cases. Meeting the cooling load limit does not guarantee “good” performance.

In addition, the way the NCC is applied to apartments is different to they way it is applied to detached houses. While detached houses must comply with a minimum 6 stars in Victoria, apartments may have ratings as low as 5 stars but the average rating over the whole apartment building must be 6 stars. This means that the star rating performance of apartments will typically vary from 5 stars to 8 stars in the one building.
The differences between apartment and detached house design mean that the guidelines in this manual may not be applied to apartments in the same way as for detached houses e.g.:

› Insulation still works, but if the only surface exposed to outside is a small area of wall, the overall benefit for the apartment may be small. It is still good construction practice to insulate walls in this case to stop condensation.

› North facing windows are ideal because they have larger winter heat gains and smaller summer heat gains than windows in other orientations. It may not be physically possible for some apartments to have any north facing windows. In this case the best approach is to minimise the detriment of poor orientation.

While the general principles of thermal performance described in this manual apply equally to both houses and apartments, the specific suggestions may not. Care should be taken in the application of this manual to apartments.
Planning your house

Design your house so you can limit the area of your house that is heated and cooled to only those areas that are occupied so that you only need to heat or cool the rooms you are actually using.

Design guidelines

- Large, open-plan living areas make it hard to contain the area heated or cooled. Use glass or bi-fold doors to allow you to reduce the area heated/cooled while retaining the open-plan aesthetic.
- Group rooms with similar uses together like bedrooms or living area and allow them to be closed off so you can limit areas that are heated and cooled.
- Use doors at the base of stairwells to prevent heated or cooled air leaking upstairs.
- Ensure you can contain the size of the areas heated and cooled. An open plan house can mean that you have to heat and cool the entire living area which will significantly increase energy bills. Provide doors to allow individual living areas to be cut off from other living areas. Stacker and bi-fold doors can allow you to maintain the open plan look, while still allowing you to contain the area you heat and cool.
- An air lock is a space between inside and outside which can be closed off from the rest of the house so that when you open the external door the cooler external air doesn’t blow straight in to the house. Creating airlocks at external doors limits the escape of heated or cooled air when doors are opened.
- High ceilings allow warmed air to gather at the top of the ceiling rather than keep you warm and reduce the efficiency of heating. A ceiling fan with a winter setting will mix up the air so that more of the heat reaches you.
- Group together areas that use hot water to minimise heat loss from pipes, plumbing costs and water wastage.

FIGURE 1.10: ZONING OF A HOME FOR A NARROW NORTH-SOUTH BLOCK

- Bedrooms
- Bathrooms/ Laundry
- Kitchen/family day-time zones on the north
- Doors between living areas and bedroom zones
- Garage/ carport
- Formal living

FIGURE 1.11: ZONING OF A HOME FOR A NARROW EAST-WEST BLOCK

- Bedroom
- Bathrooms/ Laundry
- Kitchen/family day-time zones on the north
- Doors between living areas
- Children’s playrooms or studies on the north side
- Formal living
- Garages/ carport
- Form living

FIGURE 1.10: ZONING OF A HOME FOR A NARROW NORTH-SOUTH BLOCK

- Bedrooms
- Bathrooms/ Laundry
- Kitchen/family day-time zones on the north
- Doors between living areas and bedroom zones
- Garage/ carport
- Formal living

FIGURE 1.11: ZONING OF A HOME FOR A NARROW EAST-WEST BLOCK

- Bedroom
- Bathrooms/ Laundry
- Kitchen/family day-time zones on the north
- Doors between living areas
- Children’s playrooms or studies on the north side
- Formal living
- Garages/ carport
- Form living
Victorian climates have hot summer days, but overnight temperatures are often much lower. You can minimise your use of air conditioning by designing the house to encourage cross ventilation to cool down the house overnight or after a cool change (see Figure 1.12 and refer to Chapter 7).

- In Victoria cooling breezes usually come from the south. Small openings on the south (windward) and larger openings on the north (leeward) help maximise cross ventilation.
- If you can’t place windows on the south and east try and ensure that there are openings on at least two sides of rooms.
- Provide short ventilation paths connecting external openings (less than 8 m) to encourage cross-ventilation.
- If your house is large and ventilation paths are too long, consider using a mechanical ventilation system to cool down the house.

Some rooms in the house are less important to keep cool in summer or warm in winter e.g. garages, bathrooms, storage areas and laundries. You can use these spaces on less favourable orientations (see Chapter 4: Windows) to provide protection for heated and cooled rooms (i.e. living rooms and bedrooms). Keep these spaces away from the north to ensure other rooms can use north windows.

- Use utility areas such as bathrooms, laundries and garages as buffer zones on the west and south sides of the home.
- Locate garages and carports on the east, west or south sides to protect the rest of the home from summer sun and winter winds (see Figures 1.10 and 1.11).
- Be careful not to place rooms or garages where they will overshadow northern windows during winter mornings or afternoons. Avoid deep north-facing courtyards (see Figures 1.12 and 1.13 and later section on Courtyards).

The sun is most intense on east and west windows in summer. Maintaining summer comfort is much easier if these windows are well shaded and are modestly sized.

- Avoid a westerly aspect for bedrooms which heat up the room just before you go to bed. An easterly aspect is fine if you can shade windows in summer. As with all rooms a northerly aspect is best (see Figure 1.14). If you can’t achieve this consider using clerestory windows.
- Design your house with a room that can be a cool retreat: a living area positioned on the south side of the house with modest sized well shaded windows. This room will only need a little energy to keep cool even if the other areas of the house are uncomfortable so allows you to keep cool and contain your energy bills at the same time.
02 / Sun, Climate and Comfort

The contents of this chapter outlines background information relating to the movement of the sun and how to determine its position at a given site; climate zones in Victoria and how this affects heating and cooling energy requirements; and factors influencing our perception of thermal comfort.
The sun and the seasons

The tilt of the Earth’s axis as it orbits the sun creates the different paths and angles of the sun from summer to winter. For half of the year the southern hemisphere is tilted toward the sun which creates summer conditions. When it is tilted away the southern hemisphere is cooler i.e. winter. The time between these two extremes is called the equinox, when both hemispheres receive the same amount of sunlight.

Equinoxes

At the equinoxes (21 March and 21 September), the sun rises exactly in the east and sets exactly in the west. The point directly above the observer is called the zenith (see Figure 2.10). The angle between the zenith and the position of the sun at noon (solar noon) is equal to the site latitude. In Victoria latitude varies by only around 4.5 degrees, so the sun angles are broadly similar across all locations.

Figure 2.10 shows the apparent movement of the sun to an observer in Melbourne and the resultant summer and winter shadows. The relative angles and position of the sun vary slightly across Victoria according to latitude.

Winter solstice

The winter solstice on 21 June has the least daylight of the year (around nine hours). In Melbourne the sun rises from a position on the horizon about 30° north of due east, travels low across the sky and sets about 30° north of due west. Its maximum altitude angle at solar noon is about 29° (see Figure 2.11).

Summer solstice

The summer solstice on 21 December has the most daylight of the year (around 14.5 hours). In Melbourne the sun rises from a position on the horizon about 30° south of due east, travels high in the sky and sets about 30° south of due west. Its maximum altitude angle at solar noon is around 75° (see Figure 2.11).
Evaluating shading impacts

The position of the sun in the sky varies across the year and during the day. As a result the extent of shade cast by eaves, pergolas, and surrounding buildings also varies throughout the day and the year. This variation is allowed for by Nationwide House Energy Rating Scheme (NatHERS) software tools. These tools are used to determine compliance with building regulations for new houses and renovations.

While these impacts are calculated by NatHERS tools, they do not provide a visual indication of how effectively your house is shaded. It is therefore useful to examine shading impacts during the design process using other software tools.

Most building designers and architects use computer-aided design (CAD) software, and most CAD software packages can visually show shading impacts at different times of the year and day. There are also a number of free tools available for download on the internet that allow you to relatively easily construct a model of your house and examine shading impacts.

Figures 2.12, 2.13 and 2.14 below, show examples of shading studies using SketchUp®. You can use these 3D modelling tools to check out how much shade eaves provide in winter and summer.

At the winter solstice, the eaves do not shade most of the north windows (1) so these windows provide free solar heat to heat up your house in winter. Note that the wall above the window is shaded. If the windows went up to the underside of the eave, this top part of the window would be in shade. The deep eaves creating an ‘Outdoor Room’ at (2) leaves these windows in shade in winter and they will not help to heat the house. At the summer solstice, however, the eaves completely shade the north windows.

You can also use these tools to examine whether adjacent buildings will overshadow your house as shown in Figure 2.15 below. This shows that the north windows of the house will not be overshadowed at the winter solstice. In summer, of course, shading keeps your house cool. So you can also use these tools to see whether adjacent buildings provide shade in summer. This helps you decide whether you need to install external blinds or shading structures like pergolas to shade windows or whether shade from surrounding buildings and trees will do the job for you.

Planning codes often require a certain proportion of private outdoor space to be in sun at the equinox either on your lot or on adjacent lots. These tools can show whether you comply with minimum areas in sunlight required by these planning codes.

Note that complying with planning code requirements minimum open space in sunlight requirements should not be seen as a guarantee that the affected houses have either enough sun in winter or enough shade in summer. It will always be important to check out the impacts of eaves, surrounding buildings and vegetation at various times of the year and the day to ensure that you have the right mix of sun in winter and shade in summer.

Chapter 3 on siting and solar access and Chapter 4 on windows provide more information on how to make best use of windows to provide free heating from the sun in winter and how to keep the sun out in summer.
Climate zones in Victoria

Australian climates are classified in two ways.

For NatHERS energy ratings there are 69 climates across Australia. Nine of the climates apply to Victoria (see Figure 2.16). NatHERS software tools will use the climate zone linked to your dwelling’s postcode when assessing the thermal performance of your house. You can see an interactive map of NatHERS climate classifications at http://nathers.gov.au/nathers-accredited-software/nathers-climate-zones-and-weather-files.

You can also meet the requirements of building regulations using the Deemed to Satisfy requirements for Insulation levels and Window performance values rather than a NATHERS energy rating. Climate classification is simpler for this purpose and there are only eight climate classifications across Australia, three of which apply to Victoria. You can download a map of Victorian climates at: http://www.abcb.gov.au/Resources/Tools-Calculators/Climate-Zone-Map-Victoria. Refer to Figure 2.17.

The amount of energy you need to heat and cool your house depends on the climate at your location. The temperature, solar radiation, wind speed and humidity the house is exposed to all affect the need for heating and cooling. Figures 2.18 shows the average maximum and minimum temperature in Summer and Winter for various Victorian climates.

Figure 2.18 shows that Mildura is significantly warmer in summer so it will need more cooling than other Victorian climates. Ballarat and Alpine areas are much cooler in winter so they will need more heating than other Victorian climates. Inland climates also have a greater daily range of temperatures than coastal climates e.g. Warrnambool versus Ballarat because there is less cloud cover in inland climates means that the climate cools down more overnight and heats up more during the day.

As will be explained in Chapter 6 on thermal mass, inland climates, which have a larger daily range of temperatures than coastal climates, are particularly suited to using heavy weight high thermal mass construction like concrete slabs or internal brick walls.

The amount of solar radiation in Victoria also varies significantly between climates and is at much lower levels in winter than summer. Again, in inland climates, the amount of solar radiation available will be higher because of the lower cloud cover.

Figure 2.19 shows the total amount of solar radiation falling on a horizontal surface in kWh for the three months of winter or summer for the same climates shown.

These climatic influences combine to produce significantly different heating and cooling requirements across the various climates. Figure 2.21 shows how heating and cooling requirements vary across these climates for the typical 6 star house shown in Figure 2.20.
FIGURE 2.18: AVERAGE SUMMER AND WINTER TEMPERATURE RANGES IN VARIOUS VICTORIAN CLIMATES

TEMPERATURE (°C)

<table>
<thead>
<tr>
<th>City</th>
<th>Summer</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Sale</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Alpine</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Mildura</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Tullamarine</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Warrnambool</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ballarat</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 2.19: SUMMER AND WINTER RADIATION ON A HORIZONTAL SURFACE IN VARIOUS VICTORIAN CLIMATES

KWH PER SQUARE METRE

<table>
<thead>
<tr>
<th>City</th>
<th>Summer</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Sale</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>Alpine</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Mildura</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Tullamarine</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Warrnambool</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ballarat</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

FIGURE 2.20: TYPICAL 6 STAR HOUSE PLAN USED TO ASSESS HEATING AND COOLING LOADS IN VARIOUS VICTORIAN CLIMATES
Thermal comfort

Thermal comfort refers to the range of conditions in which the majority of people feel comfortable. This is a limited range, as we need to maintain a relatively stable body temperature of around 37°C.

The heating and cooling loads shown in Figure 2.21 are the energy requirements needed to provide comfortable conditions inside the typical 6 star house (shown in figure 2.20) throughout the year.

Our bodies produce heat depending primarily on the level of activity e.g. sitting, standing or running, and loose or gain heat according to the surrounding environmental conditions.

The body loses or gains heat in three main ways:

- Radiation 45%
- Convection 30%
- Evaporation 25%

Heat can also be gained or lost by conduction e.g. coming into contact with surfaces at a different temperature to your skin like walking on a floor with no socks on. The proportion varies depending on the temperature of the surfaces and the area of skin in contact with these surfaces. Figure 2.22 shows the main factors affecting body heat gains and losses inside a building.

FIGURE 2.22: BODY HEAT GAINS AND LOSSES

Heat gains
- From solar radiation
- From warmer air
- From warmer objects
- From radiant heaters
- From contact with warmer objects

Heat losses
- To cooler air
- To cooler objects
- By evaporation
- By contact with cooler objects
Thermal comfort variables

Comfort is influenced by seven main variables. All these factors are accounted for by NatHERS energy rating software. Factors affecting comfort are listed below.

Air temperature (also called dry bulb temperature): this is the main influence on thermal comfort.

Mean radiant temperature: the average temperature of all exposed surfaces in a space. For example:
- Single glazed windows have a surface temperature which is close to the outside temperature. On a cold night your body will lose heat to the cooler windows and you will need to heat to a higher air temperature to maintain comfort to compensate for this radiant heat loss to the windows, and
- Radiant heaters like hydronic (hot water) panels can make you feel comfortable at lower air temperatures than heaters which only heat the air because of the radiant heat gain from the heating panel.

NatHERS tools use the environmental temperature to predict heating and cooling loads which combines both air temperature and radiant temperature effects.

Relative air velocity: this is important in warm weather, as air moving across the skin increases heat loss by evaporation, lowering the perceived air temperature. NatHERS tools will open windows in summer to provide air movement. They predict the air speed through each room and will not turn on cooling if this air movement is enough to provide comfort. An air speed of 0.5 m/sec will make you feel about 1.6 degrees cooler while an air speed of 1.0 m/sec will make you feel about 3.8 degrees cooler.

Air movement in colder weather can make us feel uncomfortably cold even when the air temperature would normally be considered comfortable e.g. the draughts that arise from loose fitting windows and doors. See chapter 7 on air leakage and air movement.

Humidity: moisture content of the air is defined as relative humidity and may cause discomfort when above 70% or below 30%. While this rarely applies in Victorian climates NatHERS tools will turn on cooling in conditions of high humidity.

Activity levels: lower air temperatures are acceptable when users of the space have higher activity levels, reducing their heating needs.

Thermal resistance of clothing: lower air temperatures are acceptable if users of the space wear warm clothing or use enough blankets to lower their heating needs (e.g. in bedrooms at night). Lower heating thermostat levels are used in bedrooms by NatHERS tools despite the fact that our activity level is low because we are insulated by bedding.

Adaptation to climate: The conditions in each climate affect how comfortable we feel. In warmer climates like Mildura, people become adapted to higher temperatures and do not set air conditioning thermostats to as low a temperature as in cooler climates like Ballarat. This is reflected in the thermostat settings used by NatHERS tools.
This chapter explains how to select a lot, site your home and arrange the rooms in your home to maximise the benefits of solar energy.
Siting and Solar Access

The degree to which your north windows and roof are exposed to the sun is known as Solar Access. High exposure to the sun is known as good solar access. The guidelines below explain how to maintain good solar access for your north windows in winter.
Benefits of solar access

The energy from the sun can help you to reduce your household energy use. In winter months, north facing windows let in the sun’s heat to provide free home heating and are easily shaded in summer with a simple eave. Windows facing in other directions don’t provide nearly as much heat in winter (see chapter 4 on Windows for more information).

Solar hot water panels collect the sun’s heat to provide 60-75% of the heat you need for hot water. Millions of Australians have installed photovoltaic panels on their roofs to generate their own electricity from the sun. However, if surrounding buildings or vegetation overshadow your north windows, or the roof where your panels are installed, these benefits are lost.

It is harder to provide good solar access to north windows compared to the roof, because your roof is higher than your windows and less exposed to overshadowing from surrounding objects. So providing good solar access to your north windows ensures that you will also have good solar access for your solar hot water or photovoltaic panels.

All new houses in Victoria must achieve a minimum 6 (out of 10) star rating. If you have good solar access to north windows in daytime occupied areas like living areas the cost of achieving 6 stars can be significantly reduced. This is because north windows heat your home during the day, so you don’t need to reduce heat losses by as much as you would without solar access e.g. less double glazing or insulation. The case study in Chapter 8 provides an example of the construction cost savings that can be made by implementing solar passive design principles. Houses with good solar access also make it easier and cheaper to build houses at even higher star ratings than the minimum 6 stars. Note that north windows to any space will make it more comfortable in winter, but the largest benefits for regulatory compliance occur when north windows are in daytime occupied spaces like living areas.

Diffuse and direct solar radiation

When people think of solar radiation they usually only think about the radiation that comes directly from the sun. However, for north windows, the amount of sun that is reflected from the sky or the ground is responsible for up to 40% of the energy falling on the window in winter. This reflected radiation is called diffuse radiation. This means that your north windows can receive some shade from direct sun without losing all the sun’s energy.

Early solar access guides concentrated on eliminating all winter shade by surrounding object on north windows. This guide focusses on strategies which maintain at least 90% of the total radiation – direct and diffuse – falling on north windows. The advantage of this approach is that buildings can be sited closer together than an approach which only considers shadows or direct radiation.

While a number of diagrams in this chapter show a representation of shadows cast, all siting guidelines to protect north windows from shade in winter include the effect of both shade from direct sun and diffuse sun (e.g. Figures 3.16, 3.17, 3.19 and 3.20).

Siting for solar access

The key to providing good solar access to your north windows is maintaining an area to the north of these windows which is free of other buildings or evergreen trees (see Figure 3.10).

The size and shape of your lot affects your ability to site your house with a clear space in front of your north windows. The amount of space you need to protect your solar access depends on the height of the houses to the north and the slope of the land. The following sections explain how these factors can affect solar access, and the extent of open space you will need to maintain on your lot to protect your solar access.

FIGURE 3.10: UNOBSTRUCTED SPACE TO THE NORTH FOR GOOD SOLAR ACCESS
Choosing a block

These guidelines explain how to select a lot for your new home that will make it possible to have north facing windows to the living areas which have good solar access.

The key principles of lot selection are:
- Ensure there is enough space on the lot to accommodate north windows to all your living areas, and then
- Protect the solar access to these north windows from overshadowing by surrounding buildings and vegetation by setting your house back from the north boundary.

If your lot boundaries don’t align with north, then you will need to build your house at an angle to the lot boundary to make use of north facing windows. This can lead to a less efficient use of outdoor space, and on narrow lots make the use of north windows impractical. Figure 3.11 shows preferred lot orientations for narrow lots.

Design guidelines

You will get the best solar access by selecting lots with the following properties:

- Large lots allow the greatest opportunity to place the home with living areas facing north.

If you are looking at smaller lots:

- Where the longest side of the lot runs north-south (Figure 3.12) the backyard or street will protect your solar access. In this case the key factor is selecting a block that is wide enough to allow your living rooms to have north windows.
 - If there is a one-storey building built to the north you will need to keep your house at least 5.5 m from this building.
 - If there is a two-storey building built to the north you will need to keep your house at least 10.0 m from this building.
 - Lots with a street or park to the north are ideal because there will be no buildings to the north. This allows you to choose a narrower lot and still have good solar access.

- Where the longest side of the lot runs east-west (Figure 3.13) you need to choose a lot which will allow you to set the house back from the northern boundary so that the solar access to the living area north windows is protected:
 - If there is a one-storey building built to the north you will need to keep your house at least 5.5 m from this building.
 - If there is a two-storey building built to the north you will need to keep your house at least 10.0 m from this building.
 - Lots with a street or park to the north are ideal because there will be no buildings to the north. This allows you to choose a narrower lot and still have good solar access.

- Blocks that slope down to the north (see Figure 3.14) will be less affected by overshadowing to the north and will therefore have better solar access.

To protect your solar access, avoid lots with the following properties:

- Small, irregular-shaped blocks;
- Narrow blocks that slope steeply to the south (see Figure 3.15);
- Blocks with obstructions such as buildings and tall trees to the north; and
- Long, narrow blocks with boundaries that don’t align with the north-south or east west (see Figure 3.11).
FIGURE 3.12: BLOCKS THAT RUN NORTH-SOUTH CAN PROVIDE GOOD SOLAR ACCESS IF MINIMUM BOUNDARY WIDTHS ARE PROVIDED.

FIGURE 3.13: BLOCKS THAT RUN EAST-WEST CAN PROVIDE GOOD SOLAR ACCESS IF MINIMUM BOUNDARY WIDTHS ARE PROVIDED.

FIGURE 3.14: DISTANCE BETWEEN HOMES CAN BE LESS ON NORTH-FACING SLOPES

FIGURE 3.15: AVOID NARROW BLOCKS THAT SLOPE STEEPLY TO THE SOUTH
Placing your home on the block

This section provides guidelines on siting your home and the general layout of living areas and garages/carports to make the best use of the solar access of your lot. These are suggested minimums and detailed shading studies, like those described in Chapter 2, will always provide a better and more flexible solution.

Design guidelines

- Keep north-facing walls and windows well back from large obstructions to the north such as buildings, trees or fences, as they cast shadows two to three times their height in mid-winter (see Figure 3.16) depending on the time of day. A distance of at least 5.5 m from a single-storey obstruction to the north, or at least ten metres from a double-storey obstruction, is recommended (see Figure 3.17).

- Consider building on the south, east or west boundaries. If this is not possible, at least place the home close to the southern boundary. This gives you more space to put your living areas on the north and helps to avoid windows in less favourable orientations.

- Avoid placing garages, carports and other buildings on the northern side of the block so that you can maximise the use of north windows in your living areas. This may mean you may have to place your house on the east or west boundary (see Figure 3.18).

- Consider sharing walls with neighbours, particularly on the east or west boundaries (see Figure 3.18). Sharing walls reduce the area of wall exposed to outside temperature fluctuations and therefore significantly reduces the heat loss/gain to the house.
FIGURE 3.16: OBJECTS CAST SHADOWS TWO TO THREE TIMES THEIR HEIGHT IN WINTER

FIGURE 3.17: ALLOW ADEQUATE DISTANCE FROM OBSTRUCTIONS TO THE NORTH

FIGURE 3.18: WISE HOUSE PLACEMENT CLOSE TO EAST, WEST AND SOUTH BOUNDARIES MAXIMISES SOLAR ACCESS
If site constraints mean that it is just not possible to achieve good solar access, then windows will be a significant source of heat loss in winter. Without solar heat gains in winter even a double glazed window will lose 4 to 8 times more heat than an insulated wall and single glazed windows will lose 12 times more heat. You can contain the extra cost of meeting regulations by trimming window areas. Full height glazing provides a wonderful link to the outside environment, but the bottom and top of the glass don’t provide views. In sites without solar access raising the sill height and lowering the head height of windows by 300 mm can help to contain costs without sacrificing views.

Raise sill heights for north facing glass with poor solar access

Raising sill heights can eliminate areas of north glass which are permanently in shadow (see Figure 3.19). Table 3.1 shows the recommended sill heights and distance required from a northern obstruction to maintain 90% of winter solar access.

<table>
<thead>
<tr>
<th>Sill height</th>
<th>Distance (metres) needed to maintain 90% solar access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One storey</td>
</tr>
<tr>
<td>Eave depth of 600 mm</td>
<td></td>
</tr>
<tr>
<td>Floor level</td>
<td>5.5</td>
</tr>
<tr>
<td>0.3 m</td>
<td>4.8</td>
</tr>
<tr>
<td>0.6 m</td>
<td>4.5</td>
</tr>
<tr>
<td>Eave depth of 300 mm</td>
<td>If you raise the sill by 900 mm, reduce the eave depth</td>
</tr>
<tr>
<td>0.9 m</td>
<td>4.0</td>
</tr>
</tbody>
</table>

This chapter has explained how to maintain good solar access to north windows. Real world constraints, can mean it is not always possible to achieve this. Renovations of an existing house often face constrained solar access. This section explains how to keep the benefits of north facing glass where solar access is limited.
Use north facing clerestory windows

On sites with severely constrained solar access to north walls, using north-facing clerestory windows can allow you to take advantage of free heat from the sun in winter (see Figure 3.20). In addition, because they are less overshadowed, clerestory windows provide much more light than windows in walls at ground level providing a light and airy feel to the room.

Here are some tips on using clerestory windows:

› Use windows with double glazing or single low-e coated glass. Hot air rises, so heat losses are higher through clerestory windows.

› Don’t make them too big. In winter the first few square metres of north glass is responsible for much of the energy saving (see Chapter 4 on Windows for more information). Too great an area of clerestory window will increase your winter heat losses and can create overheating problems in summer. Remember that clerestory windows allow more light to enter a room so you will not need such a big area of glazing.

› Use a ceiling fan with a winter reverse setting. This ensures that air is mixed up and the heat doesn’t stay up at the level of the clerestory window.

› Make some of the clerestory windows openable. In summer this can help you to get rid of the heat that builds up at ceiling level.

› Make sure they are shaded in summer. Ideally, clerestory windows should be shaded with an external blind so you can choose when you want to let the sun in or keep it out. However, if you want to shade clerestory windows with a fixed shading structure the depth of the shading device does not need to be very wide because clerestory windows are often 600 to 900mm in height. A 300mm wide shading structure with a 150mm gap from the window head to the underside of the overhang should be enough.

Courtyards

Courtyards and L shaped buildings can cast unwanted shade on north facing windows.

Table 3.2 shows how you can position north facing windows in courtyards to minimise overshadowing and maximise solar access. Note that if your courtyard or L shape is only single storey you should use the window positions shown for the first floor.

<table>
<thead>
<tr>
<th>WINDOW LOCATION AND HEIGHT</th>
<th>DISTANCE FROM OVERSHADOWING WALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST FLOOR</td>
<td>D/4 (MAX 1.5 M)</td>
</tr>
<tr>
<td>WINDOWS WITH ANY GLAZING</td>
<td>D/5 (MAX 1 M)</td>
</tr>
<tr>
<td>BELOW 1200MM</td>
<td></td>
</tr>
<tr>
<td>WINDOWS WITH ALL GLAZING</td>
<td>D/2 (MAX 3 M)</td>
</tr>
<tr>
<td>ABOVE 1200MM</td>
<td></td>
</tr>
<tr>
<td>GROUND FLOOR</td>
<td>D/3 (MAX 2.2 M)</td>
</tr>
<tr>
<td>WINDOWS WITH ANY GLAZING</td>
<td></td>
</tr>
<tr>
<td>BELOW 1200MM</td>
<td></td>
</tr>
<tr>
<td>WINDOWS WITH ALL GLAZING</td>
<td></td>
</tr>
<tr>
<td>ABOVE 1200MM</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.21 shows shade cast on June 21 at 2:30 in a 2 storey north facing courtyard. The lower the window, the greater the shade from the sides of the courtyard. Lower windows will need to be placed further from the projecting wall to avoid excessive shade. Note that these guidelines are suggested values only. Careful design using NatHERS tools will still allow energy efficient solutions even if these suggested clearances are not used. The higher the courtyard, the greater the need for careful design.
This chapter explains how windows affect the energy efficiency of your home and how to make windows work for you to minimise the cost of complying with building regulations for new homes and renovations.
Benefits of good window design

Windows are a vital part of any home – they allow natural light into the home and provide views and fresh air. Well-planned and protected windows improve comfort year-round and reduce the need for heating in winter and cooling in summer.

Window size, orientation, shading and internal coverings can have a significant impact on energy efficiency and occupant comfort. Designing north windows for maximum solar access can reduce winter heating bills by up to 25%. External shading can block up to 80% of summer heat gain through windows. Internal window coverings and double glazing can reduce winter heat losses by up to 70%.

Windows are also the most critical component in achieving the minimum energy performance requirements of the building regulations. Chapters 2 and 3 explain how to choose a site and position your house to maximise the use of beneficial north-facing glazing. Use of north-facing glazing can help you to minimise the cost of complying with regulations and give you the ability to use a greater amount of glazing in your house.
Window Energy Rating Scheme

The Window Energy Rating Scheme (WERS) has been developed by the Australian windows industry with the support of the Australian Government. WERS rates a window’s energy performance in summer and winter in terms of stars. No stars means the window is a very poor performer while 5 stars indicates an excellent performer (see Table 4.1).

Selecting windows using star ratings

In Victoria’s cooler coastal and inland climates e.g. Melbourne, Sale, Warrnambool and Ballarat, the best windows are those with the most stars for winter performance and low stars for summer performance. This is because heating energy use is much higher than cooling energy use in these climates.

In warmer Victorian climates like those around Mildura you will need a balance of window performance that focuses more on reducing summer heat gain because it has much higher cooling loads (see Fig. 2.21). Windows with higher cooling stars may be needed on the east and west, while the best windows for a southern orientation will be those with higher winter stars.

TABLE 4.1: PERCENTAGE IMPROVEMENT IN HEATING AND COOLING IS REPRESENTED BY THE NUMBER OF STARS

<table>
<thead>
<tr>
<th>Number of stars</th>
<th>Indicative improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows to keep cool</td>
<td></td>
</tr>
<tr>
<td>NIL</td>
<td>0%</td>
</tr>
<tr>
<td>★</td>
<td>12%</td>
</tr>
<tr>
<td>★★</td>
<td>24%</td>
</tr>
<tr>
<td>★★★</td>
<td>36%</td>
</tr>
<tr>
<td>★★★★</td>
<td>48%</td>
</tr>
<tr>
<td>★★★★★</td>
<td>60%</td>
</tr>
<tr>
<td>Windows to keep warm</td>
<td></td>
</tr>
<tr>
<td>NIL</td>
<td>0%</td>
</tr>
<tr>
<td>★</td>
<td>9%</td>
</tr>
<tr>
<td>★★</td>
<td>18%</td>
</tr>
<tr>
<td>★★★</td>
<td>27%</td>
</tr>
<tr>
<td>★★★★</td>
<td>36%</td>
</tr>
<tr>
<td>★★★★★</td>
<td>45%</td>
</tr>
</tbody>
</table>

Based on the amount of energy required to heat or cool a typical house, when compared with using clear, single glazed aluminium windows.

Window performance information

The WERS scheme also provides important performance data about windows that allow you to compare products on a level playing field. The WERS website (www.wers.net) shows the U value and Solar Heat Gain Coefficient (SHGC) for hundreds of thousands of window products available in Australia.

The U value shows how much heat flows through the window due to the difference between internal air and outside air. The lower the U value, the lower the heat flow and the better the performance of the house.

The SHGC shows how much of the sun’s heat will get through the window in both summer and winter. SHGC values vary from 0.1 (lets only 10% of the sun in) to 0.85 (lets 85% of the sun in). A clear single glazed window will typically have a SHGC of approximately 0.6 to 0.85 depending on the size of the frame, while a tinted window will have a SHGC of approximately 0.3 to 0.5 depending on the frame and the nature of the tint.

In cooler climates high SHGC values are best because they maximise heat gain from the sun in winter. In these climates summer heat gain is best managed using shading systems which let the sun in in winter and keep it out in summer e.g. external blinds or eaves on north windows. In climates like Mildura windows with lower SHGC values will generally provide higher NatHERS star ratings on all orientations except for north facing windows. However, much depends on the overall area of windows and whether the house or individual rooms have higher heating loads than cooling loads.

Energy ratings and regulations: Finding alternative windows

New homes and significant renovations need to be assessed against the minimum energy performance requirements set out in the building regulations. When your house is assessed against these regulations the required U value and SHGC for each window will be reported to you by the NatHERS assessor, the building designer or building surveyor. You can use these values to shop around for suitable products from any window manufacturer. The WERS website allows you to search its database to find which windows meet the U and SHGC your windows need to achieve.

To meet the building regulation requirements your windows need to have a U value which is equal to or less than the value specified and an SHGC within 5% or 10% of the value specified. Ask your NatHERS assessor or Building Surveyor for more details.

The U value and SHGC of glazing also depends on the opening style of windows (e.g. casement, awning, sliding and fixed) because the area of the frame is different in each case. When looking for windows that meet the requirements of your rating, make sure you are comparing minimum performance values with windows that have the same opening style.

If you want to use a window which is not within the original specifications your house may still comply, but this will need to be verified by re-rating the house using the actual products you want to use. Your NatHERS assessor will make a small additional charge to do this and your plans will need to be amended to show the actual windows used. If you do change the window types used, your house may need further changes in order to comply with the rating requirements such as changes to insulation levels or window sizes. In this case additional changes may add to costs of the re-rating and construction.
The three main principles of energy smart window design are listed below.

- Maximise winter heat gain by orientating windows to the north and sizing windows to suit the amount of thermal mass in the dwelling.
- Minimise winter heat loss through appropriate window sizing, together with double glazing and/or close-fitting internal coverings such as drapes with pelmets.
- Minimise summer heat gain by protecting windows with external shading devices, and through appropriate SHGC, sizing and positioning of windows.

The same principles apply to other types of glazing, such as glass doors, roof windows and skylights. Wherever the term ‘window’ is used in this chapter, it encompasses all forms of glazing.

Heat flows through glass in two ways:

- **Conduction**: heat flow caused by a difference in temperature between inside and outside – measured by the **U value**, and
- **Radiation**: glass allows a proportion of the solar radiation that falls on it into the house – measured by **SHGC**.

When the sun’s heat passes through glass it heats up surfaces inside the house e.g. walls, floors and furniture. These surfaces then radiate heat back toward the glass. However, while glass lets in the sun’s radiation it reflects the radiation from heated objects back into the house. This property of glass is used in commercial greenhouses to provide warm conditions for plants that would not otherwise be able to grow in cool climates. This is called the greenhouse effect – it is why global warming, due to higher levels of carbon dioxide in the atmosphere, is also called the greenhouse effect.

To distinguish between the behaviour of solar radiation heat gain through glass from the atmospheric greenhouse effect, the term ‘glasshouse effect’ will be used to avoid confusion.

Figure 4.10 shows how the glasshouse effect occurs. The glasshouse effect can be used to advantage in winter to keep a home warm. In summer, this behaviour makes it particularly important to provide shade.

The amount of solar radiation transmitted through windows depends on a number of factors including window orientation, size, amount of external shading, and glass treatments such as tinting or reflective films. Whether the window has a net heat gain or loss in winter depends on the balance between the amount of direct and diffuse radiation received and the amount of heat lost by conduction. With good design a house can have a net heat gain through windows in winter, and minimal heat gain in summer.
The impact of window orientation on heat gain

In summer

The amount of solar radiation that falls on a window varies according to its orientation (see Figure 4.12) and time of year. Figure 4.12 compares the summer solar heat gain in a house from just one square metre of clear single glazed window over the summer season with the heat given out by a two-bar radiator operating three hours per day for different window orientations in Melbourne. As can be seen, it won’t take too many square metres of glazing to heat up a house and make it uncomfortable in summer.

The highest heat gains in summer come from windows which face west and east. In fact, when there is no cloud the amount of radiation on both east and west is about the same. The total radiation on the east is less because temperatures are lower in the morning when the sun is in the east and this leads to higher cloud cover. So while there is less heat gain from an east window, on clear sunny mornings it is just as important to shade east facing windows as it is to shade west facing windows.

Figures 4.12 and 4.13 solar radiation data was taken from the Australian Solar Radiation Data Handbook Edition 3. Summer and winter solar heat gains used the appropriate 3 months of data (Dec. Jan. and Feb. for summer, May, Jun., Jul. for winter). Comparison with the heat output of a two bar radiator assumed a 2kW heat output. Calculation of heat loss was based on simple steady state heat flow calculations using average temperatures from 7am to midnight. Note that the actual impact on heating loads in winter as predicted by NatHERS tools is not directly proportional to this simple calculation.

In winter

In winter, the situation is different. Windows facing north, north-west and north-east can have a net heat gain over winter, and reduce your heating needs (see Figure 4.13). Although east and west windows receive substantial solar radiation in the morning and afternoon, respectively, the overall heat losses outweigh the gains over a 24-hour period. Windows orientated to the south also have net heat loss. Figure 4.10 shows the range of orientations for Victoria within which a window is regarded as facing north, east, west, or south. These orientations are used for all tables and calculations in this chapter.

North-facing windows receive winter sun, allowing light and warmth into the home. They can be easily shaded in summer to help keep the home cool.

East and west-facing windows receive much less winter sun than north windows, and quite high levels of summer sun. The size and shading of the windows need to be carefully managed.

South-facing windows receive no direct sunlight in winter and only receive early morning and late afternoon sunlight in summer. Try to minimise the size of south windows. Most cooling breezes in Victoria come from the south. So do provide some south windows to allow a good breeze path through the house in summer.
Window size guidelines

House Energy Rating software, such as FirstRate5, helps you to fine tune the design of your house to suit your specific design constraints. If you want to have large windows in less favourable orientations, NatHERS assessors using rating software can show you how to do this.

This new flexibility means that older ideas about optimum window sizes are out of date. However, achieving regulation compliance in new houses/renovations with large glass areas can significantly add to construction costs because the higher the area of glass used, the higher the performance of the glass will have to be.

It is important to remember that after the sun goes down – when the majority of heating loads occur – single glazing has a heat loss 12 times higher than an insulated wall, and double glazing 4 to 8 times higher. So windows can be the weak link in an otherwise efficient design, particularly at higher areas.

The following principles and guidelines are presented to help you make better window design decisions. They are based on achieving the required 6 star rating with minimal use of double glazing. They apply to houses and not apartments. Apartments can generally use higher window areas because the low heat loss through shared walls, floors and ceilings means there are less constraints on heat loss through windows.

Principles for sizing windows

The following are key principles to consider when sizing your windows:

› Houses with high thermal mass construction like brick internal walls or exposed concrete slabs absorb more of the solar heat gain through windows. This means more of the heat gains can be used to reduce heating in winter, while the heat absorbed during the day in summer can be removed at night by opening windows to let the cooler air in. Houses with more thermal mass can use larger window areas.

› North facing glazing has high winter solar heat gain and is easily shaded in summer with a simple eave. If you have a choice always put your windows on the north elevation.

› A little bit of north window goes a long way. The first few square metres in any room produce most of the heating energy savings. While additional north windows will still heat up the space in winter, they will heat up the house to well above your heating thermostat setting so won’t save energy, even if the additional warmth is welcome. This means that:
 › even small north windows to any room are beneficial, and
 › there is no need to devote the entire north wall to windows if this is not practical or affordable.

The benefits of north windows depend on the type of windows you use and the amount of thermal mass in the house. Figure 4.16 shows the heating energy loads of the kitchen/living room of the Case Study house (Chapter 8) for various sizes of north glass with single glazing, double glazing and double glazing with brick cavity external walls and internal brick walls.

If you have single glazing adding further north glass does not reduce heating energy loads beyond a certain point. The extra heat gains from north windows increases the internal temperature and therefore increases the heat losses through the glass. Figure 4.14 below shows the temperatures in the living space for four areas of north glass on a day with high solar radiation in winter. The higher areas of north glass increase heat losses through the glass. At 22.8 m² of north glass the heat losses will be around 25% higher than at 1.5 m².

![Figure 4.14: Internal Temperatures on a Winter Day with High Solar Radiation](image-url)
However, just because north windows increase heating energy does not mean it has no benefit. Figure 4.15 below compares the heating energy use of the living space if it faced east with various glass areas. Note how much higher the heating energy is than with north windows.

FIGURE 4.15: IMPACT OF NORTH AND EAST WINDOW AREA ON HEATING AND COOLING ENERGY IN KITCHEN/LIVING ZONE

While heating energy loads increase with larger glass areas for single glazing as shown in Figure 4.16, larger north glazing still performs much better than glazing on other orientations. Increasing single glazing areas on other orientations would see much more substantial increases in heating loads, while increases in loads for north glazing are only small. So, if you want to use larger areas of single glazing in your house, using north facing glazing is the key.

If you have rooms with no north windows, consider using north-facing clerestory windows. Clerestory windows also provide wonderful light quality.

Floor to ceiling windows provide a wonderful ‘indoor-outdoor’ feel, but can lead to higher construction costs and reduce comfort. The bottom 300-450 mm of windows provide no views. Neither does the top 300-450 mm and this part of the window is usually in permanent shade in winter due to eaves. If you need to reduce window area, look at trimming from the top and bottom first – you’ll still get the views without the unwanted downside. Keep in mind that the building regulations generally require a minimum glass area of 10% of the room’s floor area for each habitable room.

Total window area

Table 4.2 gives recommended total window areas for single glazing expressed as a percentage of total floor area. Houses which use double glazing can use window areas which are up to a third bigger again. Larger areas of glass are better suited to homes with higher levels of thermal mass and larger north-facing windows.

TABLE 4.2: MAXIMUM TOTAL GLASS AREA AS PERCENTAGE OF TOTAL FLOOR AREA FOR HOUSES WITH MAINLY SINGLE GLAZING

<table>
<thead>
<tr>
<th>Construction type</th>
<th>Total area % when north glass is less than 5% of total floor area</th>
<th>Total area % when north glass is more than 5% of total floor area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber floor</td>
<td>20.0</td>
<td>22.5</td>
</tr>
<tr>
<td>Brick veneer and weatherboard walls</td>
<td>22.5</td>
<td>27.5</td>
</tr>
<tr>
<td>Concrete slab floor</td>
<td>22.5</td>
<td>25.0</td>
</tr>
<tr>
<td>Brick veneer and weatherboard walls</td>
<td>25.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Brick cavity walls</td>
<td>25.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

If you are using double glazing, the lower level of heat loss through the glazing means that adding more north glass keeps on reducing heating loads, and with high thermal mass the benefits of north glass are greater again.

FIGURE 4.16: HOW THE BENEFITS OF NORTH WINDOWS VARY WITH GLASS SIZE, TYPE OF WINDOW AND THERMAL MASS

If you need to reduce window area, look at trimming from the top and bottom first – you’ll still get the views without the unwanted downside. Keep in mind that the building regulations generally require a minimum glass area of 10% of the room’s floor area for each habitable room.
Balancing different orientations

NatHERS tools like FirstRate5 will allow your designer and energy assessor to develop an energy efficient house plan with a wide variety of window areas. The guidelines in this section are therefore not a hard and fast prescription for window size, just a useful place to start.

North-facing windows
Between 30° east of true north and 20° west of true north (see Figure 4.17).
- If the house is constructed with high thermal mass such as internal brick walls, use larger areas of north-facing glass.
- If solar access is good and the floors are concrete slab:
 - the area of north-facing windows over the whole house should be between 10–15% of the home’s total floor area; and
 - the area of north-facing windows in individual rooms can be up to 25% of the room’s floor area.
- If solar access is good and the floors are timber:
 - the area of north-facing windows over the whole house should be around 10% of the home’s total floor area; and
 - the area of north-facing windows in individual rooms can be up to 20% of the room’s floor area.
- If solar access is poor:
 - Keep the window area in individual rooms less than 15% of the room’s floor area.
 - Raise the sill height to eliminate the most overshadowed portion of the window.
 - Use adjustable external shading rather than eaves to maximise any winter solar heat gain.

South-facing windows
Between 40° east of south and 40° west of south (see Figure 4.18).
- Keep south-facing windows reasonably small: total window area should be less than 5% of the home’s total floor area. Maximise the openable area if possible.
- Keep the window area in individual rooms less than 15% of the room’s floor area.

FIGURE 4.17: RANGE OF ACCEPTABLE ORIENTATIONS FOR NORTH-FACING WINDOWS

FIGURE 4.18: ORIENTATION OF WINDOWS CONSIDERED TO BE SOUTH-FACING
East-facing windows
Between 60° north of true east and 50° south of true east (see Figure 4.19).
› Keep east-facing windows to a modest size: total window area should be less than 8% of the home’s total floor area.
› Keep the window area in individual rooms less than 15% of the room’s floor area.
› Shade east-facing windows in summer and consider using windows with higher cooling star ratings such as low-e coated glazing in warmer climates like Mildura.

West-facing windows
Between 70° north of true west and 50° south of true west (see Figure 4.20).
› Keep west-facing windows small: total window area should be less than 5% of the home’s total floor area.
› Keep the window area in individual rooms no more than 10% of the room’s floor area if the room has windows in other orientations. Note the NCC requires a minimum window area of 10% of floor area in all rooms.
› Shade west-facing windows in summer and consider using windows with higher cooling star ratings such as low-e coated glazing in warmer climates like Mildura.

Roof windows and skylights
Roof windows and skylights should:
› be kept to a modest size e.g. no more than 600mm x 600 mm;
› be avoided in living and bedroom areas;
› provide summer shading, and
› protection from winter heat loss e.g. use double glazed skylights, a ceiling diffuser or insulating shutters to minimise heat loss at night.

Windows facing more than one direction
The maximum window sizes apply to rooms that have windows facing only one direction. If rooms with east or west windows have windows facing other directions as well, maximum sizes should be adjusted as follows:
› reduce east glass by 1% (of floor area) for every 1.5% (of floor area) of north window area and 2.8% of south window area; and
› reduce west glass by 1% for every 2% of north window area and 3.5% of south window area.
Reducing window heat gain in hot weather

There are two basic ways of reducing the amount of heat gain through a window: Shade the window using an external device such as a canvas awning or eave, or use a window with a tint or reflective film. The following sections look at these two ways to reduce window heat gains in hot weather to make your home cooler.

Fixed or adjustable shading?

Victorian climates are very changeable. In Spring and Autumn, you may need to heat your house one day, and cool it the next. Fixed shading includes structures such as eaves, pergolas or verandas, are part of the building structure (see Figure 4.21). Although fixed devices may provide effective protection from heat gain, they lack flexibility in situations where shading may be needed one day but not the next. Further, if they successfully shade the window in hot weather, they may block out too much sun in cool weather. However, fixed shading is durable and does not require ongoing adjustment.

Adjustable shading devices include canvas blinds, conventional or roller shutters, angled metal slats, adjustable horizontal awnings and pergolas with retractable shade such as sail cloth (see Figure 4.22). Such devices permit greater flexibility to adjust on a day-by-day, or even hour-by-hour, basis, in response to changing weather conditions and individual comfort levels. They can be completely retracted to maximise winter solar access. Adjustable devices only work if you are home to adjust them.

If external shading is not feasible, internal shading devices such as close-fitting blinds, lined curtains or internal shutters are preferable to no shading at all. The lighter the colour of the external side of the curtains, the more effective it will be at reducing heat gains in summer because they reflect some of the sun’s heat before it is absorbed by the curtain material. Reflective backed curtains are more effective again.
How effective is shading at reducing cooling energy use?

Figure 4.23 below shows the impact on cooling energy use predicted by FirstRate of various shading techniques when applied to all north, east and west windows in the house (shown in Chapter 8: Case Study). Curtains and external blinds do not affect heat gains in winter but all other techniques can have a substantial impact on heating due to reduced solar gain through windows in winter. Adjustable shading is always preferable as this is the most effective at reducing cooling and does not increase heating.

Double glazing has a bigger impact on reducing cooling loads than a grey tint even though the grey tint has a lower SHGC. The SHGC value shows the reduction in solar heat gain when the sun is shining directly on the glazing (i.e. 0-degree angle of incidence). During summer, when the sun is at a greater angle to the window glass reflects a greater proportion of radiation. Because double glazing has two panes of glass reflecting radiation the overall effect is greater than a tint.
Choosing shading devices to suit window orientation

North windows

The sun is much higher in the sky in summer than in winter on north windows. So, it is possible to design an eave which keeps out summer sun, but lets winter sun in. Passive Solar design guides from the past often talk about a Rule of Thumb for designing eave shade to north windows. This Rule of Thumb seeks to ensure that windows are shaded from the spring equinox till the autumn equinox. At the latitudes in Victoria this equates to an eave which is around half the height of the window. In the 1990’s maintaining a clearance between the top of the window and the eave was added to the old rule of thumb as shown in Figure 4.24.

Now that we can simulate the hourly energy use of houses using energy rating tools it has been observed that the need for heating in cooler climates often extends well into spring and autumn. Thus, the Rule of Thumb eave casts too much shade in Spring and Autumn. The variability of Victorian climates in spring and autumn also means we need better control over shade than a fixed device can provide over this time of year.

Table 4.3 shows the shade cast by the ‘Old Passive Solar Rule of Thumb’ (width 1.2m with no offset) eave for north facing windows and eaves following the new guidelines which better balance summer and winter performance (width 0.6m and offset 0.3 m) which delivers better energy rating outcomes.

The new Rule of thumb eave for north windows casts no shade on north windows in winter but still provides complete shade in summer. On hot spring and autumn days some additional adjustable shading may be needed.

<table>
<thead>
<tr>
<th>Time of year</th>
<th>Eave Depth 10am</th>
<th>Offset 12pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>Winter</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Equinox</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>Equinox</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Summer</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>Summer</td>
<td>0.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

New guidelines for north window eave design

This eave has the following properties:

- A depth of 25% of the height of the window.
- An offset from the top of the window to the underside of the eave equivalent to half the depth of the eave.
- To avoid the triangles of sun entry shown in Table 4.3, in summer the eave should extend beyond the sides of the window by at least the depth of the eave itself (Figure 4.26).
- Additional shade for hot days in spring and autumn is effectively provided with adjustable shading devices such as external blinds or shutters, or removable shading over pergolas. These allow full winter sun access, in addition to full summer sun protection.
- If shade is provided by shade battens on a pergola (see Figure 4.25), battens should be spaced so that the distance between them is no more than the height of the batten to ensure complete sun shade in summer.
- If you use deciduous vines on a pergola to provide extra shade for north windows in summer, make sure you trim them back at the end of daylight saving or they will cast too much shade in spring and autumn.
- Fixed, angled louvres on pergolas have also been promoted by Passive Solar guidelines in the past. By setting the angle of the louvre to the winter midday sun angle the louvres will cast minimal shade in the middle of the day. However, as soon as the sun is lower in the sky e.g. in the morning or afternoon in winter or in spring and autumn, they do cast significant shade. Even if the angle of the louvres are adjustable you need to adjust the angle every few hours to maximise sun input in cool weather.
- In Mildura, which has significantly higher cooling loads than in other Victorian climates (see Fig. 2.21), eaves to north windows may need to be deeper than shown here. It will depend on the area of north windows and the thermal mass in the house.

East and west windows

- Use adjustable external shading. For horizontal shading to be effective at blocking low angled morning and afternoon summer sun, it needs to have a depth of around twice the window height. This will significantly reduce solar gain and daylight in winter.
- Windows that face north-east or north-west are also best shaded by adjustable vertical external shading devices such as awnings or blinds.
FIGURE 4.24: RULE OF THUMB FOR SIZING NORTH WINDOW OVERHANG

Solid shading device (eave overhang or battens)\[w = 25\% \text{ of } h\]

Wall above window should be half of eave depth

Wall above window should be half of eave depth

FIGURE 4.25: USE OF SHADE BATTENS ON PERGOLAS

Shade batterns

Time of year	Battens	10am	12pm
Winter | 0.6 | 0.3 |
Equinox | 0.6 | 0.3 |
Summer | 0.6 | 0.3 |

Batten shade using these guidelines produces only slightly less shade in summer than an eave with the same overall dimensions.

FIGURE 4.26: EXTEND SHADING BEYOND THE WINDOW EDGES

Solid shading device (eave overhang or battens)\[w = 25\% \text{ of } h\]

Wall above window should be half of eave depth

Wall above window should be half of eave depth

Wall above window should be half of eave depth
Tinted glass, reflective films and low-e glass

Glass can be treated to reduce the amount of solar energy transmitted through it. Where individual rooms suffer from considerable summer discomfort or high cooling energy use, the tints and reflective coating can provide some relief.

This can be an alternative method of preventing summer heat gain where external shading devices are inappropriate, such as for windows which are inaccessible, or have views which must be maintained. However, treated glass must be used with caution, as it reduces heat gain and light in winter as well as summer.

Tinted glass

Tinted glass has a tint applied to the glass during manufacture, to reduce the amount of solar radiation transmitted through it. There are two main types of tinted glass available:

- Basic tints, usually bronze, grey and green; and
- Super tints which offer greater reductions in solar heat gains, such as EverGreen™, SuperGrey™, SolarGreen® and Azurlite®.

Reflective coatings

Reflective coatings can be applied to new and existing windows. They tend to stop greater amounts of heat gain than some toned glass, and increase privacy by stopping vision into a home. To ensure optimum performance, films should be applied professionally.

Low emittance glass

Low emittance (low-e) glass comes with high or low solar transmission options and the low solar transmission option can be used for summer sun control. There are also several different types of low-e coating and some are more effective at reducing the U value of the double glazing than others. Low emittance glass also has benefits in winter as it reduces heat flow induced by the temperature difference across the glass. Emittance is a measure of how much radiant heat a material absorbs and emits.

Tints, reflective coatings and low solar transmission low-e glass may provide a useful improvement to the energy efficiency of a house in warmer climates like Mildura where cooling loads are much higher. However, because they will also reduce heat gains in winter, in most of Victoria the net effect will be to increase heating use by much more than they reduce cooling energy use.

Figure 4.27 shows the percentage change to the Case Study house (Chapter 8) heating and cooling loads for tinted glazing in Victorian climates when all windows are tinted. You wouldn’t want to add a tint to north facing windows because this will reduce useful winter heat gain from the north windows.

![Figure 4.27: Impact of tinted glazing on house heating and cooling](image-url)
Reducing window heat loss in cold weather

Heat losses through windows can be reduced by adding curtains or using double glazing. Because the resistance to heat flow of windows are so low, the additional layer of still air between the panes of glass in double glazing or between the curtain and the room significantly reduce heat losses through windows. Because the impact of curtains depends on the user, the effect of curtains cannot be modelled for regulatory ratings: all windows are assumed to have Holland blinds. However, some NatHERS tools will allow you to explore the impact of curtains in non-regulatory mode.

Thickened and/or laminated glass has a negligible effect on stopping heat loss. This is because around 98% of the window’s resistance to heat flow comes not from the glass itself, but by naturally occurring air films on either side of it (see Figure 4.28).

Impact of curtains and double glazing on heating energy use

The relative effectiveness of various window treatments in reducing winter heat loss is shown in Figure 4.29. These window treatments are applied to all windows of the Case Study house (Chapter 8).

Double glazing can halve the heating loads in a house. Using curtains can significantly reduce heat loads as well. In the case of Heavy Drapes and Pelmets the reduction in heating loads can be even greater than for typical double glazing. Double glazing with heavy drapes and pelmets are the better option. These reductions in heating loads from curtains assume that occupants keep curtains closed from sunset till sunup. Further, these savings depend on the ability of the curtains to maintain a sealed air space between the glazing and the room. Because the impact of curtains is dependent on occupant use and installation.

Note that curtains are assumed to be drawn at sunset and opened again at sunrise to let light in. Because curtains will only reduce the U value of windows for part of the time they are not as effective as double glazing with the same U value.

Figure 4.28: Resistance of Air Films and Glass to Heat Flow

- **Outside air film**: 26% of resistance
- **Inside air film**: 72% of resistance
- **Glass**: 2% of resistance
- **Film**: 2% of resistance

Figure 4.29: Impact of Glazing Type and Curtains on House Heating Loads

<table>
<thead>
<tr>
<th>Window Type</th>
<th>Window U value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double glazing Low-e Argon Fill</td>
<td>2.83</td>
</tr>
<tr>
<td>Double glazing Low-e</td>
<td>3.05</td>
</tr>
<tr>
<td>- add Heavy Drapes and pelmets</td>
<td>1.65</td>
</tr>
<tr>
<td>- add Heavy drapes</td>
<td>3.04</td>
</tr>
<tr>
<td>Double glazing</td>
<td>3.64</td>
</tr>
<tr>
<td>SG add Heavy drapes and pelmets</td>
<td>2.02</td>
</tr>
<tr>
<td>SG add heavy drapes</td>
<td>4.56</td>
</tr>
<tr>
<td>SG add Holland blinds</td>
<td>5.15</td>
</tr>
<tr>
<td>Single glazing</td>
<td>6.09</td>
</tr>
</tbody>
</table>
Reducing window heat loss in cold weather
continued

Internal window coverings

Internal window coverings are used to trap a layer of still air between the glass surface and the covering, reducing heat flow through the glass, Figure 4.31. To maintain the still air layer, coverings must be opaque and closely woven and should not allow air from the room to leak into the space between the curtain and the window. Use a barrier at the top, such as a boxed pelmet and make sure curtains extend to the floor and beyond the sides of the window.

Another approach is to recess close fitting window coverings into the window reveal (Figure 4.32).

Vertical blinds, conventional or timber venetians and lace curtains do not give a good air seal and won’t reduce heat losses through windows.
Avoiding draughts and radiant heat loss

Warm room air cools as it contacts the cold glass surface and falls to the floor as a cool draught. This lowers the room temperature and produces draughts near unprotected glass. Further discomfort is experienced as a person near a window loses body heat to the cooler surface of the glass (Figure 4.33). Appropriate window coverings can reduce the impacts of draughts and radiant heat loss to cooler window surfaces. See Chapter 3 for a further description of radiant heat loss.

Double glazing

The use of double glazing has increased significantly since the introduction of 5 star minimum energy efficiency requirements in 2004 and in particular the upgrade to 6 stars in 2009. The good news is that in the last 10 years double glazing prices have fallen significantly and is now available from virtually every window manufacturer. In addition, there are many more high performance options to choose from.

This is not to say that you can’t achieve 6 stars in Victoria without double glazing – you can. However, where site constraints mean that implementing passive solar design principles is not practical, or you want to use larger windows areas, double glazing allows you to meet minimum energy efficiency requirements without compromising on other aspects of the design. Using double glazing will also allow you to exceed the minimum 6 star standard.

The extent of heat loss through glazing is measured by the U value. The lower the U value the better. U values for double glazing varies considerably depending on the size of the air gap between the panes, the type of gas between the panes and the use of low emittance coatings and the material of the frame as shown in Table 4.4.

<table>
<thead>
<tr>
<th>Glass type</th>
<th>U value of glazing type (w/m²°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminium</td>
</tr>
<tr>
<td>Single</td>
<td>6.7</td>
</tr>
<tr>
<td>Single low-e (high gain)</td>
<td>5.5</td>
</tr>
<tr>
<td>Double air fill</td>
<td>4.8</td>
</tr>
<tr>
<td>Double argon fill</td>
<td>4.5</td>
</tr>
<tr>
<td>Double low-e (high gain)</td>
<td>4.3</td>
</tr>
<tr>
<td>Double argon + low-e</td>
<td>4.1</td>
</tr>
</tbody>
</table>

* Improved frame types: for the purposes of this table. Single glazing improved frames are assumed to have window frames which are mounted in line with the timber window reveal so the timber covers part of the frame area which reduces heat flows; Double glazing uses Thermally Broken frame. These are not the only ways to achieve improved aluminium frame performance, but are shown as examples of higher performing aluminium windows.

Note that most double glazing is now manufactured with an argon fill.

The figures shown above are indicative only. For example, it is possible to obtain an aluminium framed double-glazed window with air fill which has a lower U value than the double-glazed window with argon fill listed in Table 4.4. When your NatHERS assessor or Building Surveyor lets you know what U value you need to achieve compliance with the minimum energy efficiency requirements, the U values shown in the table above may not correspond with the actual type of windows needed. You will need to need to refer to the WERS website to determine the exact type of windows you need.

FIGURE 4.33: UNPROTECTED GLASS AND WINTER DISCOMFORT
Types of double glazing

Air gap

Double glazing is most commonly produced as a factory-sealed unit where two panes of glass are separated by a still air layer of between 6mm to 20 mm (see Figure 4.34). A double-glazed window with a 12mm air gap will have 10% better (lower) heat loss than the same glazing with a 6mm air gap.

Double glazed products for high acoustic performance are available with air gaps of up to 100mm. While the larger air gap significantly improves acoustic performance, it does not result in a substantial improvement in thermal performance because the space is big enough to allow air convection currents between the panes which increases heat flows.

Gas fill

All manufacturers offer alternative gases for filling double-glazed units, with the most common being argon. Argon increases the performance of units because it has lower conductivity than air. Argon filled double glazing will have around a 10% better (lower) heat loss than air filled double glazing.

Low emittance glass

Low-e glass has a special coating which reflects radiant heat back into the room. The coating is located on the glass inside the air space, and reduces transmission of radiant heat from the warmer glass to the colder glass. Low-e glass is generally only used in conjunction with double glazing, but you can get single glazing with a hard low-e coating. U values for single low-e products fall in between the plain single glazed and double glazed products. While this type of glazing does not have as good a U value as double glazing, in mild climates it is often all that is needed to comply with energy efficiency regulations.

Depending on the direction the coating is facing, low-e glass can be used to reduce either heat loss from inside a building or heat gain from outside (in hot climates). The use of low-e glass to control heat gain is not recommended for Victorian conditions as it also reduces the amount of solar gain in winter.

Glazing manufacturers around the world are developing new and more effective low-e coatings. So, low-e coated double glazed windows can now have significantly different U values depending on the coating used.

Window frame material

The material of the window frame can affect overall window performance. Materials with high heat conductance cause more rapid heat loss from the heated interior in winter and higher heat gain in summer. PVC and timber frames generally perform better than metal frames, unless metal frames have thermal breaks to decrease conductance across them (see Table 4.4).

Window frames also block out solar radiation. In cooler climates windows with small frame areas are preferable because the smaller sized frames allow for a greater area of glass and hence let in more sun in winter.

FIGURE 4.34: TYPICAL DOUBLE-GLAZING SYSTEM

FIGURE 4.35: SOLAR RADIATION ON PITCHED ROOFS IN WINTER AND SUMMER
(MJ/m² adapted from Australian Solar Radiation Data Handbook)
Skylights and roof glazing

The two main types of skylights on the market are shown in Figures 4.37 and 4.38. Roof glazing refers to products which are like windows. Skylights and roof glazing will soon be covered by the WERS scheme so that consumers can more easily compare product performance.

Solar radiation levels falling on roofs and implications for roof glazing

The amount of heat from the sun on skylights of roof glazing is higher than on walls in summer because roofs face up to the sky and are therefore more exposed to the sun. The distribution of radiation levels for roofs is quite different to walls (see Figure 4.35).

Where wall radiation levels drop off considerably in summer south of east and west (see Figure 4.35), levels of solar radiation on roofs of all orientations are constant in summer on roofs. Furthermore, radiation levels in summer on roofs are 50-60% higher than on a west wall. This means that summer heat gains from skylights and roof glazing can cause significant problems with discomfort and high cooling loads. The larger the glass area, the greater the potential for excessive heat loss and gain. It is vital to provide shade in summer, use low U value products and keep sizes modest to avoid a significant reduction in the energy efficiency of your home. It can be difficult and expensive to correct problems created by skylights and roof glazing once installed.

To avoid excessive summer heat gain and winter heat loss roof glazing and skylights should only be kept as small as practical. As a roof glazing admits, on average, around three times as much light as the same area of vertical glazing, there is no reason for it to be excessively large. Australian Standard AS4285 provides recommended sizing guidelines for skylights, e.g. toilet, ensuite or walk-in wardrobe requires a 400 mm x 400 mm shaft or one 250 mm tube type.

Summer heat gain

As shown in Figure 4.35 the amount of sun on pitched roofs in summer is very high. A typical 900 mm x 900 mm unshaded skylight can admit as much heat as a three-bar radiator running for six hours a day throughout summer.

Skylights and roof glazing are best shaded using external awnings. A number of products with remote winders to allow you to operate them from inside are available. However, these products are expensive. A number of double glazed skylight products are now available with an operable shading screen in between the panes which allows a lower overall cost than providing external awnings.

Using tinted glazing in skylights won’t reduce heat gains by as much as external awnings or shading screens between the panes, but they still provide a significant reduction in summer heat gain. While low SHGC products are generally not recommended in Victoria they can be a better option for roof glazing, particularly if the area of the roof glazing or skylight is large and if your house already has enough solar gain in winter from windows.

Winter heat loss

Winter heat loss through skylights and roof glazing is larger than through windows because the air at the roof level is warmer than the air at window level due to stratification of the heated air inside a home. Glazing at ceiling level loses up to 40% more heat than glazing at eye level because the air temperature at ceiling level is higher. All roof glazing should be double glazed and skylights should be fitted with ceiling diffusers – typically a translucent polycarbonate sheet that forms a sealed barrier between the room and the skylight shaft – to reduce winter heat loss (Figure 4.36).

Daylight tubes

Daylight tubes can be a more energy efficient alternative to conventional skylights. They consist of a clear, hemispherical dome, a smooth highly reflective tube and a diffuser at ceiling level (Figure 4.37). As they require a smaller area of roof glazing than a traditional skylight, heat gain in summer and heat loss in winter is significantly reduced. They are best suited for use in smaller rooms such as bathrooms, hallways and entry areas. Note that types with textured, flexible ducts can deliver significantly less light than those with smooth shiny ducts.
05 / Insulation

The contents of this chapter outline the benefits of insulation, how insulation performance is measured and types of insulation products. Guidelines are provided for insulation selection and installation.
Insulation benefits

Insulation is the cornerstone to all energy efficient house design. Without insulation a dwelling can’t be energy efficient.

Insulation is not the only design strategy needed. Glazing that is not appropriately sized or oriented (Chapter 4) or high levels of uncontrolled air leakage (Chapter 7) can short circuit the insulation and result in high energy heating and cooling loads.

Insulating a home can save 45–55% of heating and cooling energy. Table 5.1 shows the savings on heating and cooling energy when insulation is installed. Because it has such a significant effect on energy efficiency, insulation is required by regulation for new housing and alterations, renovations and additions.

TABLE 5.1: TYPICAL ENERGY SAVINGS DUE TO INSULATION

<table>
<thead>
<tr>
<th>Extent of insulation</th>
<th>Heating</th>
<th>Cooling</th>
<th>Heating and cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling only</td>
<td>15–25%</td>
<td>30–45%</td>
<td>20–30%</td>
</tr>
<tr>
<td>Ceiling and walls</td>
<td>40–50%</td>
<td>40–55%</td>
<td>40–50%</td>
</tr>
<tr>
<td>Ceiling, walls and floor</td>
<td>45–55%</td>
<td>35–50%</td>
<td>45–55%</td>
</tr>
</tbody>
</table>

Benefits of insulation:
- comfort is improved year-round; An exception to this rule is that insulating a suspended timber floor over an enclosed subfloor space or under a slab can increase summer cooling requirements and make the house less comfortable in summer. In Victoria this negative summer effect is outweighed by the reductions in winter heating requirements and winter comfort in most climates, but in warm climates like Mildura it can result in a lower rating. Check with your NatHERS assessor to see if underfloor insulation is beneficial or not if you are building in a warmer inland climate.
- it reduces the cost of heating and cooling by over 40%;
- it pays for itself in around five to six years;
- because an insulated house needs less heating and cooling using insulation reduces greenhouse gas emissions;
- it virtually eliminates condensation on walls and ceilings; and
- some insulation materials can also be used for sound proofing.

To help you understand how insulation works, the three modes of heat transfer are explained in section ‘Understanding heat transfer’.

Insulation will provide different benefits when installed in ceilings, walls or floors because the amount of heat lost or gained through each path is different (see Figure 5.10). Building regulations require higher insulation levels in ceilings than in floors or walls in houses because – on average – the heat flow through a ceiling is greater than through a floor or a wall.

NOTE: To avoid overheating in hot weather, windows should be shaded and the house should be able to be easily ventilated to let in cool air after a cool change. This ensures that heat entering the home through the windows in hot weather will not be trapped inside by the insulation in the building envelope.

FIGURE 5.10: HEAT FLOW WITHOUT INSULATION

Winter losses
- ceiling 25–35%
- windows 10–20%
- air leakage 15–25%
- floor 10–20%

Summer gains
- ceiling 25–35%
- windows 25–35%
- air leakage 5–15%
- floor
Understanding heat transfer

There are three ways in which heat is transferred—radiation, convection and conduction. To help understand heat flow, the way in which radiation, convection and conduction affect the heat flow through an attic roof on a cold winter’s night are described below.

Convection

Convection transfers heat through the movement of gases or liquids. If you have ever replaced a light bulb at ceiling level, you’ll notice that the air is warmer at the ceiling than on the ground. This is because hot air rises. Hot air rising is an example of heat flow by convection. In the attic space in winter, the warm layer of air above the ceiling rises and comes into contact with the cold roof surface, cools by losing some heat to the roof material, then falls to the plasterboard where the process repeats itself (see Figure 5.11).

In cold conditions both radiant heat transfer and convective heat transfer work together to increase the heat flow. However, in hot conditions, the roof is hotter than the ceiling, so the convection current shown in Figure 5.11 does not occur so the amount of heat flow is significantly less. This means that reflective insulation products provide a higher heat flow resistance when heat flows down than when heat flows up.

Radiation

Radiation is heat transfer from one object to another without the objects touching. When you warm your hands near a pot-bellied stove the heat you can feel is radiation. The heat from the sun is also radiation.

In winter, heating your house warms the ceiling. This warm ceiling radiates heat to the cooler underside of the roof in the attic space (see Figure 5.12). It is important to remember that radiation (in this case infra-red radiation) always flows from a warmer surface to a cooler surface. The higher the difference in temperatures between the two surfaces the greater the radiant heat flow will be.

The amount of heat flow by radiation also depends on the emissivity of the surfaces. The lower the emissivity, the lower the amount of radiation emitted. Reflective insulation products have a low emissivity coating which reduces heat flow by radiation across an air space. Low emissivity coatings have a polished metallic appearance.

In the attic roof space example, if a reflective membrane is placed under the roof tiles it will reflect radiation back to the ceiling. In summer, where it is hotter outside than inside, reflective insulation works in a different way. In this case rather than reflect heat, the low emittance surface won’t emit much radiant heat to the cooler ceiling. Reflective insulation doesn’t need to face the heat source – it works in both directions.

Conduction

Conduction is heat transfer within a material, or between two materials touching each other. Gases, such as air, do not conduct heat very well. Solids, particularly metal, conduct heat much more readily.

In the attic example the primary areas of conduction will be through the plasterboard ceiling (and roof tiles). The heat from the room warms the lower surface of the ceiling. The heat absorbed by the surface of the ceiling is transferred to plasterboard immediately above the surface, which heats the layer above it and so on. (see Figure 5.13).

Bulk insulation materials provide a high resistance to conduction. In the attic example, the lower conduction through the insulation than the plasterboard means that the upper surface of the insulation will be at a lower temperature than the surface of the plasterboard. This means that the temperature difference with the roof surface will be lower which in turn also reduces radiation and convection heat flow.
Types of insulation

There are two main types of insulation product:
- reflective: which primarily affects radiation heat flow, and
- bulk: which primarily affects conduction heat flow.

R value of the material: Used for bulk insulation

All bulk insulation materials are rated for their performance in restricting heat transfer. This is expressed as the R value or thermal resistance of a product. The R value is a guide to its performance as an insulator — the higher the R value, the greater the insulating effect. It measures the amount of heat that will flow through one square metre of a product when there is a one degree temperature difference. (W/m².K)

Products which have the same R value will provide exactly the same insulating effect as each other, provided they are correctly installed.

Bulk insulation

Bulk insulation traps millions of tiny pockets of still air or other gases within its structure.

These air pockets provide the resistance to heat flow (see Figure 5.14). A polystyrene cup is an example of bulk insulation — the millions of air pockets trapped allow you to hold a cup of boiling water.

FIGURE 5.14: BULK INSULATION AND HEAT FLOW
Reflective insulation works by reducing the radiant heat transfer across an enclosed space, e.g., between bricks and plasterboard in a brick veneer wall or between the ceiling and underside of a roof in an attic (see Figure 5.15). Reflective insulation will not add any R value if the reflective surface does not face an air space. However, in attic spaces lined with reflective foil under the roof surface, adding ventilation to the roof replaces the warm air inside the attic with cooler outdoor air and reduces summer heat gains. This isn’t really changing the R value of the attic space, but because it reduces the heat flow through the roof, simplified calculation methods such as those used in the NCC deemed to satisfy clauses assign a higher R value to a reflective lined attic with ventilation.

Reflective insulation needs to remain clean and dust-free for best performance and there must be no holes in the insulation so that air cannot pass from one side to the other.

Overall R value:
Used for reflective insulation and building elements

The overall R value is the total resistance of a building element. It takes into account resistance provided by construction materials used in a wall or ceiling, internal air spaces, insulation materials and air films adjacent to solid materials. Each of these components has its own inherent R value, the sum of which provides the overall R value.

Because reflective products work by increasing the effective resistance of an air space within a wall, floor or ceiling it is usual to represent their performance in terms of the overall R value of the building elements they are installed in.

Comparing reflective and bulk insulation performance

Because the two types of insulation use different measures of their performance it can be difficult for consumers to compare the performance of the two types of products. The best way to compare the product R value of a bulk insulation product with the overall R value of a reflective insulation product is convert the reflective insulation R value to an added R value. You can do this by subtracting the overall R value of the building element without reflective insulation from the overall R value with the reflective insulation. As a general rule, subtracting R0.5 from the overall R value of a building element will give you the approximate effective R value added by the reflective insulation.

Comparing R values of reflective and bulk insulation is further complicated when the insulation is installed in a floor or ceiling because reflective insulation products have a different (higher) R value for heat flow down than heat flow up. In Victoria the requirements for heating are generally greater than for cooling so you need to focus on R values for heat flow down in floors or up in ceilings.

Comparing R values for bulk insulation products

The same R value represents the same performance for any bulk insulation product. In this case the key difference will be in the thickness of the insulation needed to achieve the R value you want to use. Some products will trap air or gas more effectively, and so will have a higher R value for a specified thickness. For example, a 65 mm thickness of extruded polystyrene has the same R value as an 80 mm thickness of glasswool: around 1.5.

Always consider the amount of space that is available within your wall, floor or ceiling when selecting the type of bulk insulation you want to use because an insulation product which is compressed will reduce its R value e.g. a 150 mm thick glasswool product will lose 25% of its R value if squeezed into a 90mm space and may push the plasterboard off the framing.
Insulation products

The following pages provide general information on the range of insulation materials available. Table 5.3 shows the type of elements i.e. walls, floors or ceilings, where these insulation products are best used.

Bulk insulation
Bulk insulation contains millions of tiny pockets of still air (or other gas) trapped within the material. This gas provides the material’s insulating effect so it is important not to compress bulk insulation. Bulk insulation is available as batts, blankets and boards, or as loose fill which is pumped, blown or placed by hand into an area.

Batts and blankets
› Blankets are manufactured in rolls for specific types of installations, e.g. under roofing in a cathedral or raked ceiling or under a flat roof.
› Blankets are generally thinner and denser than batts so have a higher R value for a given thickness, and are available with reflective foil attached to one side.

Glasswool (fibreglass)
› Made from melted glass spun into a flexible mat of fine fibres. Available as batts or blankets.
› Available in higher densities with higher R values for a given thickness e.g. 90mm wall batts can vary between R2 – R2.7.
› Commonly sold in DIY packs with R values clearly labelled.
› Blankets are manufactured in rolls for specific types of installations, e.g. under roofing in a cathedral or raked ceiling or under a flat roof.
› Blankets are generally thinner and denser than batts so have a higher R value for a given thickness, and are available with reflective foil attached to one side.

Rockwool
› Made from volcanic rock melted at high temperatures and spun into a mat of fine fibres. Available as batts or blankets.
› Denser than glasswool, so has a higher R value for a given thickness. Better sound absorption qualities than glasswool. Generally more expensive than glasswool. Other characteristics are similar to glasswool.

Natural wool
› Made from sheep’s wool formed into batts or blankets.
› Should only be manufactured from new, scoured wool treated with a vermin and rot-proofing agent during the scouring process. Moth-proofing of wool is vital—check with the manufacturer for test results to guarantee this (test results should not be more than four months old).
› Most batts and blankets are made of a wool-polyester blend to reduce settling and compression. Naturally flame-resistant, however, the addition of synthetic fibres increases flammability—check with supplier for fire resistance testing results.
› As different types of wool can provide different R values for the same thickness, check with the supplier for R value tests and certifications.

Polyester
› Made from polyester fibres (including recycled PET bottles) spun into a flexible mat, available as batts or blankets.
› Similar physical properties to glass wool and rock wool, but is non-irritable.
› Does not burn, but will melt if exposed to a direct flame at high temperature.

Loose-fill insulation
This type of insulation consists of shredded or granulated material supplied in a loose form, and is usually installed by the supplier/manufacturer. It must be correctly installed at even depth to provide adequate insulation cover. Barriers should be installed to prevent insulation falling down through exhaust fans, wall cavities, ceiling vents and light fittings.

Loose-fill material may settle over time, reducing its effectiveness—your contractor should quote you a guaranteed ‘settled R value’, which is the final R value achieved after any settling has occurred.

This type of insulation is more suited to flat or shallowly-sloping ceilings of less than 25° pitch. With the exception of some rockwool products, loose-fill is only suitable for insulating ceilings.

Cellulose fibre
› Made from waste paper pulverised into a fine fluff.
› Must be treated with fire retardant chemicals to reduce flammability.
› Cheaper to purchase and install than other types of bulk insulation.
› Quality and installation can vary greatly, so ensure the product complies with Australian Standard AS2462 (1981): Cellulosic fibre thermal insulation.

Natural wool
› Typically manufactured from natural sheep’s wool off-cuts.
› Only, scoured wool should be used. It should not contain any synthetic fibres, or dyed or recycled materials.
› Cheaper grades of wool are commonly used and can include small leather fragments—this should not affect performance.
› Should be treated with a vermin and rot-proofing agent during the scouring process.

Granulated rockwool
› A loose-fill form of rockwool.
› If treated with a water-repellent agent, can sometimes be used to fill cavity brick and brick veneer walls—check with the supplier to see if it is suitable.
Boards

These are used mainly in walls and cathedral ceilings. Some boards are available with plasterboard backing so you can install the internal lining and insulation at the same time.

Extruded polystyrene
- Rigid, waterproof boards of closed cell polystyrene.
- High compressive strength.
- Contain flame-retardants, however, installation is only recommended between non-combustible surfaces (e.g. plasterboard, reflective foil or brickwork).
- Very high R value per unit thickness.
- Generally more expensive than other types of bulk insulation.
- Some products available with reflective foil backing.

Expanded polystyrene
- Rigid boards of polystyrene beads, can have reflective foil attached to both sides.
- Solid or hollow pods of polystyrene can be used for insulation slab on ground floors.
- If foil backed, should be installed with foil facing still air spaces of at least 25 mm width to maximise R value.
- Expanded polystyrene has lower R value for a given thickness than extruded polystyrene.

Foil-faced rigid thermostet phenolic insulation
- Rigid boards with foil attached to both sides.
- Should be installed with foil facing still air spaces of at least 25 mm width to maximise R value.
- Phenolic insulation has a higher R value per unit thickness than other insulation so is particularly useful where the space for insulation is limited.

Reflective insulation

Reflective insulation is traditionally made of thin sheets of highly reflective aluminium foil laminate, however, non-metallic reflective surfaces are now available. Reflective insulation only works if it faces a still air space.

Reflective foil R values are influenced by the characteristics of adjacent air spaces, such as their orientation – horizontal, vertical or sloping – the thickness of the air space it faces and the temperature difference across the air space. Reflective air space have higher R values if the temperature difference is lower so using multiple layers of reflective products can provide higher R values.

Adequate performance can be achieved by combining reflective insulation with bulk insulation and/or using specialist foil products, provided they are carefully installed. Any gaps or tears will significantly reduce performance because this allows air to pass from one side to the other and this convection heat flow will short circuit the radiation. In addition for installation on a horizontal position dust will build-up on the upward facing surface and increase the emissivity of the reflective surface and significantly increase the radiation heat transfer.

Four types of reflective insulation products are currently available.

Reflective wrap
- Foil laminated to paper with glass fibre reinforcement or non-metallic reflective coatings.
- Supplied in rolls.
- Typically used as roof sarking and wall insulation.
- Double-sided foil is more effective than single-sided, provided that both sides face a still air space because it can create two reflective air spaces. It is also more water resistant.
- Double-sided foil is typically produced with an anti-glare coating for occupational health and safety reasons—this reduces the insulation’s effectiveness by around 10%.

Multi-cell reflective foil products
- Two, three or four layers of laminated foil separated by partitioning to provide a one, two or three-layered cell structure.
- Can be installed over ceiling joists and between or across wall studs, depending on the product.
- R value depends on the number of cells and the presence of still air layers between the batts.

Expandable concertina-style foil
- Double-sided reflective foil formed into an expandable concertina.
- Used mainly under timber floors and between wall studs.
- Adjustable width to suit varying gaps.

Foil bonded to bulk insulation
- Reflective foil bonded to batts, blankets or polystyrene or phenolic foam boards.
- Increases insulation benefits only if installed with the foil facing a still air space.
- Blankets are a common method of insulating cathedral ceilings and under flat roofs.

Australian Standards cover most insulation products. Provided the product complies with the Australian Standard, good levels of performance and reliability can be expected. If no Australian Standard exists, it is vital to ensure the product has been independently tested to ensure performance is optimised. This should be done in a National Association Testing Authorities-accredited laboratory and must conform to the testing requirements of AS/NZS 4859.1:2002 – Materials for the thermal insulation of buildings – General criteria and technical provisions. R value tests conducted overseas may not meet the requirements of the standard and as a result may not show the correct R value.
Insulating slabs

There are three main ways of insulating a slab floor:

- **Install insulation board under the slab**
 The board can be used as a formwork for the concrete. Sides of floor beams should be insulated too. This can be achieved by using the insulation board as a formwork to pour the concrete into. Note that excavators will need to dig slightly wider trenches than they would for a conventional uninsulated slab.

- **Waffle pods**
 See Figure 5.16. A series of polystyrene pods are set up in a grid pattern and the concrete is poured in between and over the pods. Because you can’t insulate under the ribs of the waffle the impact of the insulation is limited compared to using insulation boards under the slab, but can still add half a star to NatHERS ratings in Melbourne climates.

- **Slab edge insulation**
 This is required by the NCC if you use a heated slab. This insulation reduces heat flows to external air temperatures at the edge of the slab but does not affect the heat flow through the core of the slab to the favourable ground conditions.

Soundproofing

Some insulating materials can be used for soundproofing. Bulk insulation, particularly denser materials have good sound absorbing qualities.

The soundproofing performance of a particular product is measured by a sound reduction index referred to as Sound Transmission Class (STC). The higher the STC rating, the greater the soundproofing performance. If soundproofing is desired between rooms (e.g. between a bedroom and a bathroom), high density insulation can be installed in internal walls or between floors in a two-storey building. Blanket type insulation installed directly under metal roofing also helps reduce external noise caused by wind, rain and hail. Specialised acoustic insulation products are also available which provide even better soundproofing performance.
Insulation levels required for new homes and renovations by the National Construction Code (NCC)

There are two ways of meeting the energy efficiency requirements of the NCC with regard to insulation:
› Achieve the total R values specified in clause 3.12.1 elemental requirements for floors, walls, and ceilings, or
› Achieve a minimum star rating of 6 stars as assessed by a NatHERS accredited tool used by accredited NatHERS assessors.

NCC clause 3.12.1 Minimum insulation requirements

The NCC sets minimum insulation requirements in terms of the overall R value of a building element i.e. the total R value of a wall, floor, or ceiling including all the building materials, air films, and air spaces. It sets different R values depending on the climate zone (see Table 5.2 below). The NCC divides Victoria into 4 climate zones:
› Warmer inland areas like Mildura (Climate Zone 4).
› Cooler coastal and inland areas like Melbourne or Horsham (Climate Zone 6).
› Colder inland climates like Ballarat (Climate Zone 7), and
› Alpine Areas (Climate Zone 8).

<table>
<thead>
<tr>
<th>TABLE 5.2: R VALUE FOR CLIMATE ZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ceiling*</td>
</tr>
<tr>
<td>Wall**</td>
</tr>
<tr>
<td>Suspended Floor</td>
</tr>
<tr>
<td>Slab on ground with in slab heating</td>
</tr>
</tbody>
</table>

* For light, medium and dark coloured external roof surfaces
** In climate zone 4 if the wall is shaded, lower R values can be used. For heavyweight walls brick cavity, concrete block or mud brick walls lower insulation R values can be used in houses with slab on ground floors.

To determine the Insulation R value required you must subtract the R value of the uninsulated element. As a general rule, the R value of the uninsulated element will be around 0.5 for walls, ceilings, and floors over unenclosed subfloor spaces and around 0.6 to 1.1 for floors over enclosed subfloor spaces depending on the height and ventilation of the subfloor space.

This is a complicated calculation and it is recommended that you take the advice of your Building Surveyor or NatHERS thermal performance assessor to determine the actual insulation R values needed.

The Insulation Council of Australia and New Zealand has prepared example calculations for many common construction types to show you how to meet the requirements of the NCC insulation levels. It can be downloaded from the ICANZ website (icanz.org.au).

Insulation levels required when using NatHERS energy ratings

Using a NatHERS rating provides you with greater flexibility in the insulation levels you use. You can:
› Use less insulation than required by the NCC elemental provisions if your house contains aspects of good passive solar design.
› Get credit for using more insulation if you want to relax requirements for other parts of the house like glazing.
› Get credit for insulation to internal walls to unconditioned areas and between floor, and
› Use a variety of different insulation R values to suit the types of construction in the house.

The flexibility offered by NatHERS ratings is the reason why the majority of houses use ratings to determine compliance with the NCC rather than the elemental provisions.

While using NatHERS ratings provides flexibility, more often than not NatHERS assessors will specify quite high levels of insulation. This is because the additional insulation generally costs only a little more but the increased performance allows you to save money by lowering specifications in other areas of the house.

The other reason for using high insulation levels is that insulation in walls and floors can often be very expensive to upgrade at a later date: it is better to put in as much as practical now while it is cheapest.

Heat flow depends not only on the climate and R value, it also depends on area. High insulation levels may also be specified by NatHERS assessors in walls of two storey houses, houses with a courtyard design or high ceilings because they have larger wall areas.

In most climates in Victoria using a waffle pod slab (see Chapter 6) will add around half a star to the NatHERS rating. Waffle pod slab floors have been used in increasing numbers in Victoria because of this benefit. If you want to use a waffle pod slab make sure that an engineer has confirmed that it is suitable for the soil classification of your site.

Waffle pods will make the house a little less comfortable in hot weather because they insulate the house from the cooler ground temperatures. In climates like Mildura, which have higher cooling loads than in other parts of the state, waffle pod slabs can make your NatHERS rating worse.
When selecting insulation, ensure that the material is:
› the recommended R value for the relevant area;
› appropriate for the intended installation;
› a material covered by Australian Standards or approved by other recognised testing authorities; and
› sufficient to meet local building authority requirements.

AS1530.1 (1989) provides a standard testing procedure to measure:
› ignitability;
› the spread of flame;
› the amount of heat generated when alight; and
› the amount of smoke generated when alight.

Ignitability is rated on a scale of zero to 20, while other factors are rated on a scale of zero to ten. The lower the number, the smaller the risk.

Cellulose fibre must be treated with a fire retardant such as a mix of borax and boracic acid during manufacture. The treatment ensures that, if the material does ignite, the flame will not spread. Expanded and extruded polystyrene are combustible, and should only be installed between fire-resistant surfaces (this includes plasterboard). Natural wool is flame resistant, provided only pure, new scoured wool is used. Wool which is oily, or has synthetic fibres mixed with it is potentially flammable.
Suggested applications for insulation products

Table 5.2 provides general information about the various insulation products currently available, together with the most common applications for each product. It is possible to adapt most products for different uses if required.

<table>
<thead>
<tr>
<th>Insulating Material</th>
<th>Material Description</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batts and blankets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glasswool</td>
<td>Manufactured from melted glass spun into a mat of fine fibre. Made to an Australian Standard and commonly sold in DIY packs with R values clearly labelled. Easy to cut and install. Remains inert. Should not be compressed or moistened. Butt all ends and edges together firmly.</td>
<td></td>
</tr>
<tr>
<td>Rockwool</td>
<td>Volcanic rock melted at high temperatures and spun into a mat of fine fibres. Denser than glasswool so R value per unit thickness is higher. Good sound absorption properties. See Glasswool for other characteristics.</td>
<td></td>
</tr>
<tr>
<td>Glasswool/rockwool – foil attached</td>
<td>Characteristics same as above with foil providing increased insulating value (in summer) and moisture resistance. R value depends on method of installation.</td>
<td></td>
</tr>
<tr>
<td>Natural wool</td>
<td>Should only be made from new, scoured wool. Must be treated with a vermin/rot proofing agent during the scouring process. Dirt or grease can add to flammability. Some include synthetic (usually polyester) fibres to reduce settling and compression. The Wool Mark logo signifies the batt is made from pure wool only. No Australian Standard as yet.</td>
<td></td>
</tr>
<tr>
<td>Polyester</td>
<td>Manufactured from polyester strands spun into a mat. Similar physical properties to glass wool and rock wool. Non-toxic, with no known physical or health hazards. Does not burn, but will melt if exposed to a direct flame. Butt all edges firmly. No Australian Standard as yet.</td>
<td></td>
</tr>
<tr>
<td>Insulating Material</td>
<td>Material Description</td>
<td>Typical Applications</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Boards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded polystyrene</td>
<td>Rigid boards of close cell polystyrene which retain air but exclude water. High R value per unit thickness. Suitable where space is limited. Easy to cut and install. Should only be used between non-combustible materials such as brick, aluminium and plasterboard. Can be rendered. Most commonly used material for slab-edge and cavity brick wall insulation. Greater structural strength and moisture resistance than expanded polystyrene.</td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Expanded polystyrene (EPS)</td>
<td>Semi-rigid boards of white polystyrene beads. High water absorbency. Combustible and should only be used between fire resistant materials. Easy to cut and install. Available as preclad panels.</td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Expanded polystyrene – foil attached</td>
<td>Expanded polystyrene boards sandwiched between reflective foil. Characteristics same as above, however, higher R values achieved due to the addition of two reflective surfaces and higher water resistance.</td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Phenolic</td>
<td>Rigid phenolic foam insulation sandwiched between facing products on its outer surfaces, one or more of which can be made from, composite foil,</td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Loose Fill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose fibre</td>
<td>Manufactured from waste paper pulverised into a fine fluff. Fire retardant added. Generally pumped into roof by contractor. Difficult for the purchaser to ensure uniform thickness and density if installing by hand. Product should be manufactured to AS2462 and installed in a consistent, even layer. Must be kept dry. Must not be compressed. Settling of up to 20 mm per 100 mm thickness may occur, decreasing performance.</td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Granulated rockwool</td>
<td>Properties as per rockwool batts. However, material is loose, not a prefabricated mass. Treated with a water repellent. Should be installed in an even, consistent manner.</td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Natural wool</td>
<td>Made from off-cuts of natural sheep’s wool. Quality and density can vary considerably, affecting the R value. Other characteristics same as for natural wool batts.</td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Insulating Material</td>
<td>Material Description</td>
<td>Typical applications</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flat ceilings pitched roofs</td>
</tr>
<tr>
<td>Reflective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective foil</td>
<td>Aluminium foil laminated with glass fibre reinforcement. Supplied in rolls, one side often painted with an anti-glare paint. Does not have a significant R value itself, and requires a sealed air space of at least 25 mm between foil and solid surface to achieve full insulation qualities. Gaps in foil reduce performance. Valuable in combination with bulk insulation for enhancing performance. Useful barrier against transfer of moisture. Reflective surface needs to remain clean and dust-free. Dust build-up reduces R value.</td>
<td></td>
</tr>
<tr>
<td>Concertina foil batts</td>
<td>Expandable concertina folded foil-paper laminate. Can be adjusted to suit varying gaps. Other characteristics identical to laminate bought as rolls.</td>
<td></td>
</tr>
<tr>
<td>Multi-cell foil batts</td>
<td>Prefabricated batts made from layers of laminated foil with partition reflective strips to produce a cell construction with enclosed air cavities. Gaps will significantly reduce performance. Double or triple-cell batts (two and three layers of cells, respectively) may be necessary to achieve adequate winter insulation levels. Dust build-up reduces R value.</td>
<td></td>
</tr>
<tr>
<td>Building Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerated concrete</td>
<td>Lightweight concrete blocks or panels aerated to trap insulating pockets of air. Blocks provide solid masonry wall and insulation in the one product. Good thermal and acoustic properties. Non-combustible. Easy to handle.</td>
<td></td>
</tr>
<tr>
<td>Expanded polystyrene</td>
<td>Hollow forms filled with concrete. Hollow EPS blocks and panels create a solid formwork which is then filled with concrete, or sprayed with an external concrete render.</td>
<td></td>
</tr>
<tr>
<td>Insulated paneling</td>
<td>A range of building products, cement or metallic materials rendered onto extruded or expanded polystyrene. Designed to be used as pre-insulated external or internal paneling on roofs or walls or as a replacement for conventional tilt concrete construction. Some manufacturers use polyurethane foam or mineral wool in place of polystyrene. Characteristics vary depending on product.</td>
<td></td>
</tr>
<tr>
<td>Weatherproof housewrap</td>
<td>Sheeting made of polyethylene fibres bonded together by heat and pressure. Added to buildings during construction to weatherproof and draught proof walls. Can add up to R0.8 to walls by trapping a layer of still air.</td>
<td></td>
</tr>
</tbody>
</table>
Installing insulation

These guidelines are primarily intended to help you make sure that the insulation in your house has been properly installed so that it performs as intended. It is not intended to provide a complete procedure for self-installation, particularly in existing houses.

Installation of insulation to existing homes can be a dangerous activity. Dangers include but are not limited to electrical safety (e.g., old wiring), presence of hazardous material (e.g., asbestos), and fire safety (appropriate clearances around fire hazards). Therefore, it is critical to seek appropriate professional advice prior to installing your own insulation.

If you wish to install insulation in your own home make sure you read, understand and follow the manufacturer’s instructions and take all the necessary safety precautions.

ICANZ have developed a handbook of installation practice for professional installers. It has a significant section on identifying risks associated with installing insulation. It is highly recommended that anyone who wants to install their own insulation read this handbook. It can be downloaded from: http://icanz.org.au/wp-content/uploads/2013/12/ICANZ-HandBook-PART-2-Professional-Installation-Guide-V2-November-2013.pdf

The Clean Energy Council (CEC) is committed to ensuring the high quality of insulation installations by accredited installers and improving the standards of the insulation industry. As part of this commitment the CEC works with insulation installers in an accreditation program referred to as the Insulation Accreditation Scheme. CEC accreditation is a qualification that demonstrates an installer’s competence in the installation of batts in ceilings, floors and walls. For more information go to the Clean Energy Council website (cleanenergycouncil.org.au).

Installation guidelines

It is vital that insulation is installed with careful attention to detail, as incorrect or inappropriate installation will significantly decrease performance. For instance, failure to butt all ends and edges of batts to give a snug fit could result in 5% of the ceiling area not being covered, this can reduce the effective R value of R4.0 insulation to R2.2.

Relevant standards for installation

Various Australian Standards and national codes of practice cover the installation of insulation products with key standards set out below.

Bulk insulation must be installed in compliance with AS3999: Thermal insulation of dwellings – Bulk insulation – Installation requirements.

Reflective foil insulation must be installed in compliance with AS4200.2: Pliable building membranes and underlays – Installation requirements.

All electrical wiring encased in insulation must conform to AS3000: Electrical installations – buildings, structures and premises. In existing dwellings, which may not conform to this standard, spacers must be installed to ensure that wiring is not in contact with the insulation (refer AS3999).

It is best to keep wiring clear of insulation, e.g., run wiring on top of ceiling joists.

Installation safety when installing mineral wool (glasswool and rockwool), insulation should comply with Work Safe Australia’s National code of practice for safe use of synthetic mineral fibres (1990).
Principles of installation

The following installation principles will ensure the best possible performance from insulation.

› Avoid gaps in insulation. Leaving gaps of just 5% of the area of the ceiling will reduce the R value of R3.5 insulation to R2.1 (see Figure 5.18).
› Avoid or reduce use of downlights
› Use non-halogen downlights. Providing the 200 mm clearance required around halogen downlights (assuming 4 per 10 m²) reduces the R value of R4.0 insulation to R1.4. Other types of downlights (e.g. LED) can require as little as 50 mm clearance which would only cause a drop in R value from 4.0 to 3.5.
› Do not compress bulk insulation. Compressing 110 mm insulation into a 90 mm space reduces the R value by around 12%.
› Eliminate thermal bridges through metal framing by placing a thin insulating strip of material over the frame.
› Allow clearance around heat generating and electrical appliances and fittings.
› Protect insulation from contact with moisture.
› Where reflective insulation is used ensure a sealed air space by taping joins and any services penetrations.
› Provide vapour and moisture barriers to prevent condensation.

TABLE 5.4: SOME INSTALLATION TECHNIQUES TO IMPROVE THERMAL PERFORMANCE

<table>
<thead>
<tr>
<th>Situation</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaps where insulation not installed</td>
<td>Fit batts snugly leaving no gaps around ducts and pipes</td>
</tr>
<tr>
<td>Gaps between pieces of insulation</td>
<td>Make sure corners, junctions of wall, floor and ceiling are fully covered</td>
</tr>
<tr>
<td>Compression of bulk insulation</td>
<td>Retain maximum thickness, allow to fully expand</td>
</tr>
<tr>
<td>Thermal bridging through structural framing—metal, timber</td>
<td>Isolate metal framing from contact with cladding (required by NCC). Isolate timber framing from contact with cladding in alpine areas. Alternatively, install insulation over the frame.</td>
</tr>
</tbody>
</table>

Thermal bridging

Thermal bridging is the transfer of heat across building elements, which have less thermal resistance than the added insulation. This decreases the overall R value (see Figure 5.17).

Wall frames and ceiling joists are examples of thermal bridges, having a lower R value than the insulating material placed between them. Because of this, the overall R value of a typical ceiling is reduced. For example, adding R4.0 bulk insulation between timber joists will result in an overall R value for the whole ceiling of R3.5. Metal framing, which has lower thermal resistance, reduces the overall R value even further. Insulation suppliers will be able provide thermal break material to install over metal frames to reduce thermal bridging.

Figure 5.18 shows the impact on the effective R value of insulation when part of the ceiling is left uninsulated due to poor installation practice. To use the nomogram, find the area uninsulated at the bottom, project up to the R value you have installed then project left to find the effective R value.

FIGURE 5.17: THERMAL BRIDGING THROUGH CEILING JOISTS

FIGURE 5.18 IMPACT OF LEAVING PART OF A CEILING UNISULATED
Wall sections within a roof space

It is essential to insulate vertical wall sections within the roof space above ceilings of different heights, as these can be a major source of heat loss. These sections should be insulated to the same level as the ceiling (see Figure 5.19).

FIGURE 5.19: INSULATE VERTICAL WALL SECTIONS BETWEEN CEILINGS OF DIFFERENT HEIGHTS

Pay special attention to cathedral type ceilings. Insulate walls between ceilings to the same rating as the ceilings.

- up to R3.5 ceiling insulation
- insulate cavity brick walls
- up to R2.0 wall insulation
- insulate concrete slab edges

FIGURE 5.20: INSULATION CLEARANCE AROUND FLUES

- insulation
- 50 mm gap
- flue

FIGURE 5.21: INSULATION CLEARANCE AROUND EXHAUST FANS

- suitable barrier
- insulation
- 50 mm
- exhaust fan
- plasterboard
Clearance around appliances and fittings: Fire safety

Some appliances and fittings, such as recessed downlights and heater flues, require free space around them for the dissipation of heat, to reduce fire hazard. Insulation should not be placed against these fixtures. Regulations and manufacturers’ recommendations should always be checked before installing insulation. Table 5.5 sets out some common installation clearances.

Refer to AS/NZS 5110:2011 Recessed luminaire barriers, for further information on barriers around flues, exhaust fans and recessed lights.

<table>
<thead>
<tr>
<th>Item to be cleared</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recessed downlights i.e. penetrates ceiling lining and requires clearance to insulation for fire safety</td>
<td>Maintain at least a 50 mm clearance. If a transformer is required maintain 50 mm clearance to this as well or install above insulation. Note halogen downlights require 200 mm clearance.</td>
</tr>
<tr>
<td>Flues and exhaust fans</td>
<td>Minimum clearance of 50 mm</td>
</tr>
<tr>
<td>Loose fill insulation material</td>
<td>Use recommended barriers to restrain and ensure adequate clearance</td>
</tr>
<tr>
<td>Electrical wiring (existing home)</td>
<td>Check by electrician before installing insulation. Keep wiring clear of insulation. Restrain loose fill material by spacers</td>
</tr>
</tbody>
</table>

A number of house fires have been attributed to incorrect installation of insulation around downlights. The following detail for safe installation around downlights is taken from the ICANZ Handbook and is based on Australian Standards.

While leaving a 50mm gap is essential it is important not to leave an excessive gap. Leaving out half a batt around downlights can lead to a reduction of the effective R value of ceiling insulation by over 60%.

Fixed barrier required where:

- Insulation materials are not fixed in position
- Loose fill insulation materials are used.

![Figure 5.22: Installation of insulation around downlights](image-url)
Condensation & moisture control

Air always contains a certain amount of water vapour. This vapour can originate from many sources around the home – breathing, cooking, bathrooms, laundries, indoor plants, LPG gas heaters and so on. When moist air comes into contact with a surface which is below the dew point of the air vapour changes to liquid droplets on that surface. This phenomenon is called condensation.

Condensation is more likely to occur:
› where there is a low ventilation rate within the walls or roof space, insufficient to remove water vapour (e.g. cathedral and flat roof ceilings);
› where daytime temperatures do not exceed 5°C (e.g. in alpine areas in winter); and
› where high amounts of water vapour are generated internally but not mechanically exhausted.

Condensation on interior surfaces

Insulation, correctly installed, can keep the interior surface temperature of ceilings and external walls above the dewpoint, preventing condensation on these surfaces. Condensation control involves preventing moist air from coming into contact with cold surfaces below the dewpoint of the air by one or more of the following means:
› removing moisture-laden air by controllable ventilation or exhaust fans;
› insulating to keep ceiling and wall temperatures above dewpoint, and to reduce the difference between room temperature and surface temperatures; and
› background heating (low temperature, no more than 15 degrees) to prevent interior surfaces from cooling below the dewpoint. This may significantly increase heating energy use, so insulation is the preferred approach. This should only be considered in existing homes with significant condensation problems where installing insulation is problematic.

Interstitial condensation (condensation within bulk insulation)

In cold conditions, condensation may occur within the insulation itself. Exhausting moist air into the roof space or wall cavity may also cause condensation. Such condensation is known as interstitial condensation. It can cause mould, mildew and the rotting of building components. In addition, the effectiveness of insulation is significantly reduced when it contains water.

Condensation is a particular hazard in cathedral and flat roof systems where the low ventilation rate within the roof space may be insufficient to remove water vapour contained in the air.

These problems can be avoided by either providing sufficient ventilation within the wall or roof space to remove water vapour, or by installing vapour barriers such as reflective foil or plastic moisture proof wraps behind the internal lining. This prevents water vapour from the room entering the structure.

Exhaust fans in buildings with metal deck or tiled roofs with sarking (reflective foil installed under roofing material for weatherproofing) must be ducted to the atmosphere instead of into the roof space to ensure that condensation build-up is avoided.
Protect insulation from contact with moisture

If glasswool or cellulose fibre insulation gets wet it loses its insulation value and can absorb a significant mass of water. This additional mass can lead to structural damage. One way that insulation can get wet is if the insulation touches the underside of the roof surface. In fact, Australian Standards require that a clearance of 50 mm is maintained between the underside of the roof material and the top of ceiling insulation. This requires the installation of thinner batts around the edge of the roof where the roof pitches from the top plate of the wall. See Figure 5.23.

Masonry walls are not waterproof. In both brick veneer and double-brick wall construction a cavity between the external masonry wall and the internal lining keeps the internal lining dry. Moisture on the internal face of the external masonry wall can drain away through weepholes or evaporate into the cavity. Table 5.6 sets out techniques to prevent the insulation from absorbing moisture from the external leaf and losing its effectiveness.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick veneer construction</td>
<td>Restrain bulk insulation within the frame. Reflective foil laminate, polypropylene lashing, nylon cord, galvanised wire or building paper can be used to keep bulk insulation in place</td>
</tr>
<tr>
<td>Cavity masonry walls</td>
<td>Restrain bulk insulation to maintain at least 20 mm cavity</td>
</tr>
<tr>
<td>Existing wall cavities</td>
<td>Use water-repellent loose-fill granular rockwool insulation. Contains water-repelling agent to prevent absorption of moisture. Not allowed by some building authorities because of concern over moisture penetration</td>
</tr>
</tbody>
</table>

Provide vapour barriers to prevent condensation and moisture barriers

Condensation in bulk insulation reduces its insulating properties significantly. Vapour barriers stop the transmission of water vapour generated inside the home, through the building elements and into the building structure which can lead to interstitial condensation.

A vapour barrier installed on the warm side of insulation will prevent moist air from contacting a cold surface (see Figure 5.24). The vapour barrier should be continuous, with no breaks.

Vapour barriers include well-maintained painted surfaces, polythene sheeting and aluminium foil. If aluminium foil is required to act as both thermal insulation and a vapour barrier, ensure that a still airspace is provided.

High gloss painted surfaces generally provide adequate protection from condensation in Victorian climates.

Moisture barriers stop the transmission of water from outside the home entering through the building elements. Sarking may be installed directly under roofing material to act primarily as a moisture barrier. It is usually made of reflective foil laminate (which adds to the insulation effect), or other waterproof material.

If reflective wrap insulation is installed behind weatherboards manufacturers recommend using breather foil. Breather foil is foil which has a number of small holes that allow moisture vapor to pass through it. If breather foil is not installed the inner surface of the weatherboard will have a higher moisture content than the outer surface and the weatherboard may warp or cup.

ABCB Condensation handbook can be downloaded from the Australian Building Codes Board website (abcb.gov.au).
06 / Thermal Mass

The contents of this chapter explain the effect of thermal mass and provide guidelines for how to use it to improve the energy efficiency of your house. Summer and winter effects of thermal mass and the relationship with climate are also outlined.
A building material which has high thermal mass is a dense heavyweight material like bricks or concrete (Figure 6.10) while materials like timber or plasterboard are light weight and have much lower thermal mass (Figure 6.11).

Materials with thermal mass absorb heat from the air in the room or from the sun shining on them. This heat is then released slowly into the room over several hours. To get the best out of high thermal mass materials they must be in contact with the internal air so that heat is free to flow into and out of them. Putting carpet on a slab floor reduces this ability.

While houses with Brick Veneer walls perform better than houses with weatherboard walls because of the thermal mass of the brick, placing the brick on the outside substantially reduces its benefit. Houses with Reverse Brick Veneer walls, where the brick is exposed to the internal air will perform much better than Brick Veneer walls because the thermal mass is in contact with the inside air.

If your house is appropriately designed, thermal mass can be used to improve the comfort and energy efficiency of your house in both summer and winter.
Summer

In summer, thermal mass absorbs heat that enters the building. By absorbing heat from within the house the internal air temperature is lowered during the day, with the result that comfort is improved (see Figure 6.12).

During the night if external air temperatures are lower and you open your windows this stored heat can be removed by ventilation. Inside temperatures at night time will be slightly higher than in a building with no thermal mass, however with air movement, temperatures will still be comfortable (unless a long spell of consistently hot days and nights is experienced).

It is essential that you appropriately shade your windows so the internal thermal mass is not exposed to the summer sun.

Winter

In winter, thermal mass in the floor or walls absorbs radiant heat from the sun coming into the house through north, east and west-facing windows. During the night, this stored heat is gradually released back into the room as the air temperature drops. This helps maintain a comfortable temperature for some time, reducing the need for supplementary heating (see Figure 6.13). The slight downside for winter performance is that houses with thermal mass may need a bigger heater to warm up the house early in the morning before the sun is very intense.

For good winter performance, thermal mass should be exposed to direct sunlight and is best located in areas with unobstructed north-facing windows.

Simply changing the building materials of a house from lightweight (timber floor and timber walls) to heavy weight (concrete slab floor and brick internal walls) can reduce heating by 30% and cooling by 50% in a house designed to make best use of thermal mass.

Potential negative effects in winter and summer

In some cases thermal mass can actually increase winter energy requirements. Where there is little possibility of solar gain, either because north windows are too small or are overshadowed (poor solar access), the benefits provided by the use of thermal mass will be minimal. Each time supplementary heating is used, the thermal mass needs to be heated before the air temperature rises, increasing the heating energy needed.

Differences between thermal mass and insulation

Thermal mass doesn’t just absorb heat from solar heat gain through windows, it changes the way heat flows through a wall, floor or roof. In the right circumstances it can significantly reduce heat loss in winter and heat gain in summer. Because insulation reduces heat flow through building elements it is easy to confuse the effects and conclude that thermal mass helps to insulate the house; it does not.

Thermal mass will only reduce heat flow in climates where the external temperature is fluctuating above and below the inside temperature. In Victorian climates this typically occurs in summer where the maximum on a hot day will be above thirty but night time minimum temperatures can be in the high-teens. A significant proportion of heat absorbed by the thermal mass during the day flows back out to the cooler night temperatures and never makes it into the house. The bigger the temperature difference, the greater the benefit of thermal mass, so inland climates like Ballarat and Mildura will obtain the greatest benefits of using thermal mass in summer.

In winter however, maximums are usually in the mid-teens and minimums will be below ten. It is therefore always cooler outside than you want it to be inside. In this case the ability of the thermal mass to reverse the heat flow is lost and a high thermal mass wall will lose as much heat as a light weight wall. In cold weather thermal mass inside the house can still help by absorbing heat gain from windows. But external thermal mass walls with no insulation lose as much heat as any other external wall type in cold winter conditions in Victoria. You will significantly improve the energy efficiency of a house if you apply insulation to the outside of thermal mass to reduce winter heat loss.
Seasonal effects of thermal mass

The graphs below show how using high thermal mass building affects the unconditioned temperatures inside a house in summer and winter. The house is a passive solar design which makes best use of thermal mass. The high mass house uses reverse brick veneer external walls, brick internal walls and a concrete slab floor, while the low mass house uses weatherboard external walls, plasterboard internal walls and a timber floor.

Summer

Figure 6.14 shows how the high thermal mass house has improved summer comfort compared to the light weight house by comparing temperatures in the house without air conditioning. The house used was the Case Study house (Chapter 8).

On the hottest days the high thermal mass house is up to 7 degrees cooler than the low mass house. At night, when the heat build-up of the day can be removed using ventilation, the high thermal mass house cools down, but is still a degree or two warmer than the house built using lightweight materials.

In summer, thermal mass absorbs heat that enters the building. In hot weather, thermal mass has a lower initial temperature than the surrounding air and acts as a heat sink. By absorbing heat from the atmosphere the internal air temperature is lowered during the day, with the result that comfort is improved without the need for supplementary cooling (see Figure 6.12).

Winter

Figure 6.15 shows how the high thermal mass house has improved winter comfort compared to the light weight house.

Figure 6.15 shows the overnight temperatures in the high thermal mass house never falls below 15 degrees while the low thermal mass house can be as cold as 10 degrees in the late morning. During the day the temperatures stay at comfortable levels without heating for longer than in the low thermal mass house while the low mass house actually overheats in cool weather when north window solar gains are high. The high thermal mass house has a much lower range of temperature over winter days as the thermal mass helps to even out the temperature fluctuations.
Concrete slab on ground: A special case

Concrete slab floors are made of high thermal mass materials. Like internal brick walls they absorb heat from direct sunlight or inside air during the day and store it. Unlike thermal mass in walls, however, the temperature on the underside of the slab – the ground temperature – fluctuates very little over the day and over the year. This means that the use of high thermal mass concrete slab on ground floors has a very different impact on house energy efficiency to the use of high thermal mass internal or external walls.

Figures 6.16 and 6.17 show the internal temperature, external temperature and ground temperature for the same house shown in the graphs (Figures 6.14 and 6.15) located in Mildura. In this case, however, the house is heated and cooled. Living area heated and cooled only when conditions are uncomfortable from 7am to midnight. In some hours cooling will turn off if the room temperature is not more than 2.5 degrees above the thermostat setting – this is one of NatHERS standard assumption. As a result the internal temperature does not stay constantly at the thermostats setting in the graphs below.

Summer

While the temperature outside ranges from 18 overnight to 43 during the day, the temperature of the ground is fairly constant at 25 degrees. The temperature of a subfloor space under a timber floor will be around halfway between the external air temperature and the ground temperature.

The ground temperature is stable due to the thermal mass of the earth itself. This stable temperature means that during the day the house will actually lose heat to the ground underneath the slab, while a timber floored house would actually gain heat. And a proportion of the heat absorbed by the slab from solar heat gain through windows will be lost to the cooler ground, so not all the heat stored will be released back into the house. This gives the thermal mass in a concrete slab an advantage over thermal mass in walls or ceilings.

Winter

In winter, while the temperature outside ranges from 1 degree overnight to 15 degrees during the day, the temperature of the ground is between 18 and 20 degrees. Again, the temperature of a subfloor space under a timber floor will be around halfway between the external air temperature and the ground temperature.

During the day the heat loss through a slab on ground will be much less than though a timber floor to the subfloor because the temperature difference across the floor temperatures are much less for the slab. At night, when internal temperatures fall, the temperature of the ground is higher than internal temperatures. This means the slab floor will gain heat at night and keep the high thermal mass house warmer, while a timber floor will still lose heat throughout the night. Again, this gives the thermal mass in the slab an advantage over thermal mass in walls.

The favourable temperature difference for slabs placed on ground also explains why a suspended concrete slab over a subfloor space does not perform as well as a slab on ground.

Insulating Slab Floors

Placing insulation under slab floors will reduce heat losses through the floor during the day in winter and lower the need for heating. In summer, however, insulating under a slab floor will increase the need for cooling. This is because a slab floor typically loses heat to the ground during the day when cooling needs are highest. Insulation will reduce the amount of heat lost through the slab and make the house warmer.

In climates like Melbourne and Ballarat insulating under a slab floor will improve the star rating of a house because the reduced heating loads outweighs the increased cooling loads. However, in climates like Mildura, where cooling loads are much higher, insulating under a slab floor may result in a lower star rating. If you are designing a new house or renovation in warmer areas like Mildura, get your NatHERS assessor to check out whether insulating under the slab provides a net benefit as this will depend on the design of the house. See Chapter 5 for information about how to insulate a slab.

The best way to see whether insulating under your floor is a net benefit or cost is to simulate the house using a NatHERS tool and compare the reduction in heating with the increase in cooling.

![Figure 6.16: Comparing the temperatures in the house, under the slab and outside in summer, Mildura](image1)

![Figure 6.17: Comparing the temperatures in the house, under the slab and outside in winter, Mildura](image2)
Inside the insulated building envelope

For maximum effectiveness, thermal mass should be insulated from external air temperatures. The insulation should be located on the outer side of the thermal mass and allow the internal layer of thermal mass to come in to contact with the internal air (see Figure 6.18). The benefits of thermal mass are considerably reduced if the external envelope is not insulated. For this reason brick veneer walls offer little thermal mass benefit, as the brick is on the outside of the insulated cavity.

Inside north-facing rooms

Using thermal mass in north-facing rooms should be a priority, particularly on those walls which receive direct winter sun because this is where the heat gains from the sun are highest in winter (see Figure 6.19 and Figure 6.20).

Hot rooms during summer

High thermal mass walls and floors can significantly improve summer comfort. This only occurs when windows are well shaded from the sun and the room can be effectively ventilated at night to remove heat which has been absorbed during the day. If you can’t shade windows or ventilate the room at night high thermal mass construction can make the room less comfortable, particularly bedrooms because the heat released from the thermal mass at night can limit the extent to which the bedroom can cool down.

Masonry fireplaces on internal walls

Masonry fireplaces are best located on internal rather than external walls so that the chimney can radiate additional heat into the rooms around it (see Figure 6.22).

Amount of thermal mass

The use of concrete slab floors is beneficial throughout Victoria. Thermal mass in walls are also beneficial except under some circumstances, for example:

- if solar access is poor solar heat from windows won’t heat up rooms sufficiently in winter and thermal mass may mean that heating appliances take significantly longer to heat the room;
- if you have large unshaded windows, particularly on the west and east the thermal mass will absorb too much heat for rooms to cool down sufficiently in summer; and
- if you want to sleep at night without air-conditioning a light weight house will cool down by one or two degrees more than a high thermal mass house.

Thermal mass works best when all the floors or walls in the house are made with high thermal mass materials. While masonry feature walls make some improvement, to achieve the benefits shown in Figure 6.14 and 6.15, all the floors and walls need to use high thermal mass materials. This is because the surface area of the feature wall is much less than the surface area of all the walls.

The impact of constructing internal partition walls with high thermal mass materials is generally greater than external walls because the surface area of the internal walls is greater than the external walls and the walls are not exchanging heat with the outside as well. If you can only afford to use thermal mass in either the internal or external walls, internal walls will give the best result.

You can increase the thermal mass of your house by using thicker masonry e.g. 200 mm concrete blocks instead of 110 mm bricks. This will improve the energy efficiency of the house, however, the effect of increasing the thickness is much less than adding thermal mass by increasing the total area of walls constructed with thermal mass at a lesser thickness.
The effect of type and colour of floor covering on slab on ground

The type and colour of floor coverings on slab floors affect the interaction between solar gain entering the house and the thermal mass of the slab. Table 6.1 shows how changes to the type and colour of floor coverings affects the heating and cooling loads (MJ/m²) in the Case Study house (see Chapter 8) in the Melbourne climate.

<table>
<thead>
<tr>
<th>Colour of floor</th>
<th>Slab floor ceramic tiles</th>
<th>Slab floor carpet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating</td>
<td>Cooling</td>
</tr>
<tr>
<td>Dark</td>
<td>84</td>
<td>32</td>
</tr>
<tr>
<td>Medium</td>
<td>100</td>
<td>32</td>
</tr>
<tr>
<td>Light</td>
<td>117</td>
<td>32</td>
</tr>
</tbody>
</table>

Because this house is a Passive Solar House designed to enhance the use of thermal mass the impacts seen in Table 6.1 are exaggerated compared to other houses.

Soft floor finishes

Carpets laid over concrete slab floors will insulate the thermal mass of the slab from incoming heat. Houses will obtain higher NatHERS ratings if hard floor surfaces are used.

Table 6.1 shows that the impact of carpet on heating and cooling energy use. It shows the impact of applying carpet or ceramic tiles to all floors in the house. Because at least some floors will usually be tiled it exaggerates the impacts insulating the slab from incoming solar radiation by putting carpet on it increases both heating and cooling energy loads.

Hard floor finishes

A ceramic tiled or polished concrete finish on a concrete slab floor increases the ability of the thermal mass of the floor to store heat. This can improve cooling in summer (providing the windows are shaded) and works best for rooms with good north solar access. Other hard floor finishes, such as slate and vinyl tiles, have a similar effect on thermal mass performance.

While hard floor surfaces may feel colder with bare feet, this is not because the temperature of the surface is colder, but because the surface more easily conducts heat from your bare feet than carpet or timber. To maximise the benefits of high thermal mass concrete floors use a hard floor finish and keep your feet warm with slippers. Note that turning up the heating won’t make you feel any warmer unless you have a heated slab.

Colours

Thermal mass that is coloured black absorbs more heat than white coloured material (see Figure 6.23). The darker the floor colour the lower heating energy use becomes because it allows more of the sun coming in through windows to be stored to heat the room after sundown. Again, bear in mind that the example shown in Figure 6.23 is a Passive Solar house design with high areas of north facing windows and has north windows in every major room. The effect of colour on heating energy use will be less in houses with lower solar heat gain in winter.
Mud brick

Mud brick and rammed earth homes generally have thick walls (approximately 300 mm) and high thermal mass. When outside temperatures fluctuate above and below comfort temperatures, the high thermal mass of mud bricks considerably reduces heat transfer, resulting in lower cooling energy use. In winter however, outside temperatures are normally lower than comfort temperatures and the low thermal resistance of mud brick leads to higher heating energy use as heat is lost through the walls.

While more heat is lost in winter in Victorian climates than through insulated conventional construction it is still possible to obtain a 6 star rating using uninsulated construction. In climates like Mildura where there is a greater need for cooling this more than compensates for the higher heating energy use. In cooler climates the impact on heating energy use can be minimised by:

› Using a dark coloured render with minimal fixed shade. This increases absorption of solar radiation during the day to compensate for the high heat losses from conduction. Dark north facing walls with little fixed shading can have a net heat gain in winter.

› Minimising the external wall area to main rooms by:
 › Using unconditioned utility spaces like laundries and bathrooms on east, west and south as buffer spaces.
 › Use post and beam construction to minimise the height of the mud brick. Make sure you insulate behind the beam too.
 › Use a cathedral ceiling to minimise external wall height while still providing adequate internal volume.

› Insulating where you can do so easily e.g. insulate behind the lining of built in cupboards.

If your house has a high external wall area because it uses a courtyard design, or is two storey, you may need to insulate some wall space. Focus on insulating south wall to living areas first. The best way to provide insulation is to apply this externally (see Figure 6.24).

Finally, mud brick walls work best in a passive solar house design where all the main daytime living spaces have north facing windows, the house is constructed on slab floor with dark coloured floors and the internal walls are made of mud brick too.

Reverse brick veneer

Reverse brick veneer, as the name suggests, puts the brickwork on the inside and timber framing on the outside i.e. the reverse of traditional construction. This form of construction enables houses to achieve the same level of thermal performance as a double-brick home and makes it easier to insulate walls.

By reversing the traditional construction type, the high thermal mass of brickwork can be used to advantage. Instead of being on the outside of the insulation and hence isolated from the room, the brick skin is within the insulation envelope. Reverse brick veneer can be used in conjunction with either a concrete slab floor (see Figure 6.25) or a timber floor (see Figure 6.26).

Reverse brick veneer does not have to be used for the entire home – it may be used only for north-facing rooms. The external skin can be any type of lightweight cladding suitable for exterior use.
Two-storey dwellings

Consider thermal mass of the upper storeys of homes as they have the potential to overheat in summer because:

› as they are usually of lightweight construction, with either brick veneer or weatherboard walls.
› have no connection to the cooler ground through floors.
› are exposed to higher levels of solar radiation.
› gain heat from hot air on the ground floor which floats up to the upper floor rooms, and
› two storey houses have a greater area of wall for the same floor area so have a greater heat gain through walls which are less insulated than roofs.

Thermal mass can help prevent overheating on upper levels. Thermal mass can be provided by a suspended concrete slab floor, internal brick walls or even providing high density fibre cement sheet as the internal lining to floors and walls.

To further improve summer performance in the upper floors of two storey houses minimise the area of windows to the east and west and use modest sized north facing windows. All windows should be effectively shaded and positioned to allow good cross-ventilation.

Phase Change Materials (PCM)

There is growing interest in the use of PCMs as a lightweight thermal mass substitute in construction. All materials require a large energy input to change state (i.e. from a solid to a liquid or a liquid to a gas). This energy does not change their temperature – only their state. Phase change materials utilise the energy needed to change the material from solid to liquid as a way of storing heat. The temperature at which the material changes phase general varies between 23 and 27 degrees.

PCMs are very useful for storing passive solar gains. Any temperature increase over a desired thermal comfort level is absorbed by the PCM as it melts. This energy stays stored until the PCM starts to solidify again as temperatures drop at night. As it solidifies, it releases the stored heat.

Commonly used PCMs include paraffin wax and a variety of benign salts. Many are available in Australia. PCMs are currently expensive compared to conventional thermal mass but can reduce costs through space and structural savings. They are an ideal way to install mass in existing buildings and are particularly useful in lightweight buildings where cost savings are often achieved.

The PCM market is developing rapidly so current suppliers are best found through an internet search. Some PCMs crystallise after many cycles of phase change, which renders them useless. Get a guarantee from your supplier that their product does not do this.

The most common form of phase change materials is a plastic sheet containing pockets of PCM. This is fixed to the outer side of room linings like plasterboard or floor boards. Other forms of PCM integrate the product within other building materials e.g. PCM microcapsules integrated within plasterboard or AAC blocks. Currently (2019) PCM can be quite expensive and the price can fluctuate depending on the value of the Australian dollar as they are not manufactured locally. Gypsum plaster, paints and floor screeds also have the potential to contain PCMs.

PCMs have the potential to allow lightweight buildings to perform more like houses with high thermal mass as shown in Figures 6.14 and 6.15. For example, the thermal capacity of a 13mm thick plaster layer with 30% microcapsule content is claimed to be equivalent to that of a 150mm thick masonry wall.

Use of PCMs can be very helpful on severely constrained sites where thermal mass would otherwise be difficult to install.

07 / Air Leakage and Air Movement

This chapter is about the control of unwanted air leakage, how it can save energy and how planning to promote cross ventilation can reduce the need for air-conditioning. It also provides guidelines for maintaining acceptable air quality.
Control of air leakage can save energy

Uncontrolled air leakage can significantly reduce the energy efficiency of a house. Reducing uncontrolled air leakage can prevent heat loss in winter, and prevent the entry of warm air in summer. This can save up to 20% on heating and cooling costs and improve comfort.

The air leakage rate of a house is measured by the number of times in an hour the air inside the house is replaced with outside air – air changes per hour or ACH. Measurements of air changes in Victorian houses in a study by Sustainability Victoria (SV) has shown a wide range of air leakage rates in Victorian houses (See Figure 7.10).

These air leakage rates were measured using a blower door test. This test involves mounting a large fan in a door to pressurise a house and measuring air leakage rates at a range of different pressure levels. External doors and windows must be closed during the test.

Results from the Draft Sealing Retrofit Trial (DSRT) are used throughout this chapter.

The results of blower door air leakage tests are presented in two ways:
- Air changes per hour at 50 pascals (ACH50) taken directly from the testing results, and
- The average natural air changes per hour (ACH) rate at ambient (or atmospheric) pressure differences is derived using blower door test data. Note wind driven air leakage would only generate an average pressure difference of around 2 Pascals.

The blower door test result at 50 Pascals is often used as a benchmark for house air leakage in overseas regulations. The average natural air change rate represents the actual air change rate that would occur in the house under average real world wind and temperature conditions. As a general rule the natural average rate is approximately equal to the air change rate at 50 Pascals divided by 20.

The lower the ACH rate the less heat is lost or gained through air leakage and so the less energy will be needed for heating and cooling. Very low ACH rates can cause problems with indoor air contamination as indoor air pollutants cannot be effectively removed without opening windows or mechanical ventilation. Table 7.1 below shows what levels of ACH50 and natural ACH are considered to be good practice, what additional ventilation levels may be required to maintain indoor air quality, and the average air change rates observed in the SV studies. Note that houses which comply with a 6 star rating would be expected to achieve natural ACH rates of between 0.35 and 0.5.

The houses in this SV study had comprehensive draft sealing measures implemented to reduce their air leakage. The retrofits resulted in a reduction in the average natural ACH from 1.90 to 0.83. These reductions in air leakage were estimated to have reduced heating energy use by around 10%. The cost of reducing air leakage was then compared to the heating energy savings and a payback period of around 7 years was observed. Note that by focusing only on the major air leakage sources this payback period could be significantly improved.

Householders in the study were then asked about their perceptions of comfort after the houses were retrofitted. The houses were warmer and more comfortable, occupants had less difficulty in heating the house and draughts were significantly reduced.

The SV Draft Sealing Retrofit Trial found that a comprehensive draught-sealing strategy is one of the most cost effective measures that can be taken in Victoria to reduce heating and cooling energy use. Many draught sealing measures can be easily installed by a person competent in DIY.

TABLE 7.1: AIR CHANGE RATES IN VICTORIAN HOUSING

Note: OGA Study refers to the On Ground Assessment study conducted by MEFL for SV in 2012 (unpublished)

<table>
<thead>
<tr>
<th>Classification</th>
<th>ACH50</th>
<th>Natural Air Leakage Rate (ACH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirational PassivHaus</td>
<td>0.6</td>
<td>0.03</td>
</tr>
<tr>
<td>Best practice</td>
<td>1.5</td>
<td>0.075</td>
</tr>
<tr>
<td>Excellent</td>
<td>3.5</td>
<td>0.18</td>
</tr>
<tr>
<td>Better</td>
<td>5.0</td>
<td>0.25</td>
</tr>
<tr>
<td>Good</td>
<td>7.0</td>
<td>0.35</td>
</tr>
<tr>
<td>Fair</td>
<td>10.0</td>
<td>0.50</td>
</tr>
<tr>
<td>Poor</td>
<td>20.0</td>
<td>1.00</td>
</tr>
<tr>
<td>OGA Study* – post 1990</td>
<td>24.0</td>
<td>1.20</td>
</tr>
<tr>
<td>OGA Study* – average</td>
<td>38.0</td>
<td>1.90</td>
</tr>
<tr>
<td>OGA Study* – pre-1990</td>
<td>40.4</td>
<td>2.02</td>
</tr>
</tbody>
</table>

FIGURE 7.10: RANGE OF AIR LEAKAGE FOUND IN VICTORIAN HOUSES (FROM THE DRAFT SEALING RETROFIT TRIAL, BY SUSTAINABILITY VICTORIA, MARCH 2015, FIGURE 1 PAGE 5)
Typical air leakage rates for various types of air leakage sources

Part of the SV study included determining the air leakage rates from different sources. In selected houses individual air leakage sites were covered and the blower door test was repeated to establish the amount of air leakage through each air leakage site. There was a wide range of results found for each site. This is to be expected because, for example, the air leakage from gaps around windows depends on the size of the gap. Figure 7.11 reports the average air leakage rates observed for each air leakage source. Note that blower door test results do not accurately assess air leakage from chimneys. The rate for chimneys shown below is taken from measurements of real houses using tracer gas decay tests conducted by Melbourne University in the 1980s. Tracer gas testing is a more accurate, but much more expensive, way of testing the natural air change rate in houses.

FIGURE 7.11: AIR LEAKAGE IMPACT OF TYPICAL AIR LEAKAGE SITES

Number of features modelled shown in brackets next to feature as appropriate e.g. 12 wall/ceiling vents. A 4000 cm² hole could be 1cm wide gap which is 40 m long.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Air Leaks (m³ per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal sliding door (1)</td>
<td></td>
</tr>
<tr>
<td>Man hole</td>
<td></td>
</tr>
<tr>
<td>Gaps around in wall cooling</td>
<td></td>
</tr>
<tr>
<td>Plumbing penetrations</td>
<td></td>
</tr>
<tr>
<td>Downlights (per downlight)*</td>
<td></td>
</tr>
<tr>
<td>Ceiling rose (3)</td>
<td></td>
</tr>
<tr>
<td>Windows (per window)</td>
<td></td>
</tr>
<tr>
<td>Leaking ductwork</td>
<td></td>
</tr>
<tr>
<td>Exhaust fans (2)</td>
<td></td>
</tr>
<tr>
<td>External doors (3)</td>
<td></td>
</tr>
<tr>
<td>Louvre window (per window)</td>
<td></td>
</tr>
<tr>
<td>General gaps**</td>
<td></td>
</tr>
<tr>
<td>Wall/ceiling vents (12)</td>
<td></td>
</tr>
<tr>
<td>Evaporative cooler</td>
<td></td>
</tr>
<tr>
<td>Large gap or hole (4000 cm²)</td>
<td></td>
</tr>
<tr>
<td>Chimney</td>
<td></td>
</tr>
</tbody>
</table>

* Can style downlights designed for incandescent globes have much higher air leakage
** Gaps were generally between individual floorboards and below skirtings
Identifying air leakage sources

This section explains how to identify the air leakage sources in your home. Figure 7.12 shows typical air leakage sites in Victorian houses.

Blower door testing

The best way to identify air leakage sources is with a blower door test. Operators can then find the source of air leaks using smoke puffers and following the smoke trail, using thermal imaging cameras to see the cool air coming into the house (see Figure 7.13) or simply by feeling additional air movement or lower temperatures.

Blower door tests apply a uniform pressure to all air leakage sites in building. This does not occur under real conditions. As a result blower door tests do not always show the actual air leakage amount for particular sites e.g. chimneys have much larger air leakage than a blower door test will show because the top of the chimney is exposed to higher air speeds and creates a ‘Venturi’ effect that increases air leakage.

When you have had your house tested with a blower door test, you can calculate your natural air leakage rate with reasonable accuracy by dividing the ACH50 result by 20.
DIY air leak detection

Even without a blower door you can identify air leaks in the house using some simple techniques. The following four step procedure is based on the YourHome website (www.yourhome.gov.au)

Step 1: Identify all obvious gaps

Look for the following:
- under doors
- mail delivery and cat flaps
- around doors and window frames, especially behind architraves
- fixed vents and wet area window ventilators
- gaps between floorboards
- chimneys
- vented skylights
- air conditioners, especially evaporative coolers
- downlights
- exhaust fans
- large cracks or construction joints
- gaps above built-in wardrobes
- services entry points (plumbing, drainage, gas, electricity, phone and TV cables)
- joints where materials meet (especially dissimilar ones and floor–wall, wall–ceiling)
- holes in heating or cooling ducts.
- Dryer vents

Step 2: Depressurise your home

Choose a cool, very windy day (or a hot day in climates requiring cooling).
- Shut all windows and doors and turn off any ducted heating, cooling or ventilation systems that blow air into the house.
- Turn on all fans that suck air outside, such as exhaust fans and range hoods.
- Light an incense stick or use a smoke pencil and pass it around the edges of all common leak sites. Wherever the smoke is blown back into the room, there’s an air leak.

In addition to using a smoke pencil you can also identify leaks in other ways:
- look for obvious gaps – visible light under and around doors and windows;
- listen for ‘rattles’ or ‘whistling’ around doors and windows or moving curtains, especially during strong winds; and
- feel for moving air (or use a lighted candle) around doors, windows, fireplaces, air outlets, vents, stairways, architraves and skirting boards.

After sealing the leaks identified in this step, the air tightness of your home will most likely be above average.

Step 3: Pressurise your home

Choose a cool, still day.
- Shut all windows and doors and turn off all fans that suck air outside.
- Turn on all ducted heating, cooling or ventilation systems that blow air into the house.
- Use an incense stick or use a smoke pencil to detect air movement and follow it to the exit point; this can be difficult to find quickly, so work methodically. If the exit point is an exhaust fan or duct, it requires self-closing baffles. Temporarily seal these with paper and masking tape and continue.
- Other points of leakage then need permanent fixing, such as sealing behind architraves or under floorboards.

After sealing every outgoing leak you can find, you have probably achieved adequate air tightness for your home to perform efficiently in most Australian climates.

Step 4: Thermal imaging

Consider examining the home with a thermal imaging camera. These are reasonably inexpensive to hire, and relatively inexpensive add on cameras are now available for a number of smartphones. Figure 7.14 was taken with a smartphone add-on thermal imaging camera.

Thermal imaging works best when temperature differences are greatest.

Use the camera on a cold day and turn up the heating to make sure the room/house is significantly warmer than outside to get the best results.

Using a thermal imaging camera identifies air leakage sites because they will be at a colder temperature in winter or warmer temperature in summer. Look in particular around junctions between walls and floors and ceilings, at corners, around doors and windows, and around penetrations through the structure for plumbing pipes, electrical cables and appliances.

Thermal imaging can also be used to identify gaps in insulation, water leaks and other issues such as standby power usage (i.e. detecting heat coming from appliances and equipment that are not in operation).

FIGURE 7.14: THERMAL IMAGING

Thermal image used to detect gaps in insulation. The blue area shows insulation has fallen away from the bulkhead to the attic space behind as well as a lack of insulation in the walls.
Eliminating unwanted air leakage for draughts

This section details how you can reduce or eliminate unwanted air leakage sources. Note that there are important requirements which apply to homes with open flue gas heaters or gas heaters that do not have a flue. Open flued and flueless gas space heaters require adequate ventilation to operate safely.

Doors and windows

Doors require draught proofing at their base and between the door and door frame. Windows require draught proofing between the openable sash and the window frame.

- Seal gaps around doors and openable windows with lightweight self-adhesive weatherstripping products (foam, flexible plastic, polypropylene pile strips) (Figure 7.15).
- Fit draught excluders to the bottom of all external doors and to internal doors leading to unheated and vented areas (Figure 7.15).
- Fit automatic door closers to external doors and doors leading to unheated areas.

Fixed vents in walls and ceilings

New housing does not require fixed ventilation. Existing wall vents can be closed off without adversely affecting air quality provided that exhaust fans are used to eliminate contaminants at their source e.g. when showering or cooking, and the house is opened up to provide additional ventilation in mild weather.

IMPORTANT NOTE: If you have a flueless or an open flued gas space heater you MUST NOT COVER VENTS. Flueless heaters need wall vents to allow combustion gases to escape. Blocking off these wall vents can have severe health impacts including death.

Fixed vents can be sealed with caulking compounds, plaster or even the adhesive foam strips used for weather stripping.

Vented skylights

A vented skylight has a fixed area of opening that cannot be closed off. This is typically a strip of 2-5 cm width (see Figure 7.17). Vented skylights are typically used in bathrooms or WCs which have no openable windows.

If the skylight vent is not required by regulations – e.g. the gas safety regulations relating to unflued gas heaters – these draughts can be significantly reduced by installing a clear plastic diffuser at the base of the skylight shaft (see figure 7.17), and sealing the edges of the diffuser. The edges of the skylight shaft should also be insulated to reduce heat losses through the shaft and into the roof space in winter.

Bad: Unsealed
- Air loses heat against glass and falls to room as a cold draught
- Heat escapes through vent

Good: Sealed
- Warm air rises
- Warm air stays in the room

FIGURE 7.15: WEATHER STRIPPING FOR DOOR AND WINDOW FRAMES

FIGURE 7.16: USING PLASTER TO SEAL WALL VENT

FIGURE 7.17: VENTED SKYLIGHT
Important notice about Open Flued and flueless space heaters

If you have an open flued or a flueless gas space heater installed for heating in your home, please refer to the following sources of information and ensure that the safety measures are followed:

It is particularly important to note that negative pressure can arise in certain circumstances and cause carbon monoxide to enter your home. Carbon monoxide can be fatal. We therefore recommend that if you have an open flue space heater you:

1. Install a carbon monoxide monitor in your home
2. Get it serviced at least every two years
3. Do not cover internal air vents to the outside

Open fireplaces

Building regulations require all open fire places to be fitted with dampers which can be closed when not in use because they cause such high levels of air leakage (see Figure 7.18). If you no longer use your fireplace it can be permanently sealed (see Figure 7.19).

Flueless space heater installation restrictions in Victoria

It must be noted that flueless space heaters cannot be installed in new installations in Victoria. An existing flueless space heater operating on LP Gas can be replaced with a new flueless space heater that operates on LP Gas provided the heater meets strict emission criteria as prescribed in the Gas Safety (Gas Installation) Regulations 2018. Consult a qualified gasfitter for the installation of flueless space heaters.

Exhaust fans

Exhaust fans can draw products of combustion including carbon monoxide indoors from open flued gas space heaters if there is inadequate ventilation. https://esv.vic.gov.au/gas-technical-information-sheets/negative-pressure-environment/

Wall and ceiling mounted exhaust fans are often used in bathroom, toilet and kitchen areas to expel warm moist air, smoke or odours from these areas when they are being used. If choosing a new or replacement exhaust fan, look for models which are self-closing. Special covers with self-closing dampers are available for existing ceiling exhaust fans (see Figure 7.21).

The air pressure created by the fan opens the damper when the exhaust fan is operating and the dampers close when the exhaust fan is switched off, reducing the air leakage.

It is important to ensure that the covers are suitable for use with the existing ceiling exhaust fans.

Rangehood ventilation fans are used above the stove to vent moisture and cooking odours from the kitchen. Modern range hoods often have a self-closing damper that closes when not in use to prevent fire from the stove reaching the attic space. If you have an old range hood and are unsure about whether it has a self-closing baffle, contact the manufacturer or get a licensed electrician to inspect it.
The ceiling outlets of ducted evaporative cooling systems can allow heated air to escape in winter. If there are gaps, heated air can escape around the outside of the outlets. Heated air can also escape through the louvers into the ductwork, where it can then escape into the roof space through holes, tears or gaps due to loose joins.

If the outlet from the evaporative cooler unit is not sealed off effectively with an automatically closing damper during the winter months then heated air can also escape through the evaporative cooler itself. While automatically closing dampers are available on some evaporative cooler models, these may not completely eliminate the air leakage.

Special covers are now available which can be placed over the evaporative cooler’s ceiling outlets in winter to eliminate the air leakage through the louvers (and therefore the ductwork and evaporative cooler) (see Figure 7.23). It is important to ensure that the covers are suitable for the type and size of the ceiling outlets used with your evaporative cooling system. It may also be necessary to use caulking compounds to seal around the outside of the ceiling outlet.

In addition, winter covers are available for some roof mounted evaporative coolers to reduce winter heat losses through the evaporative cooling unit (see Figure 7.24).

Gaps in structure

Caulking compounds such as silicone or latex based gap fillers can be used to seal small cracks and gaps. For larger gaps or holes, expandable foam filler can be used. In areas which are exposed to the weather the foams may require a sealant to be applied after they have set.

Special attention should be directed to sealing cracks and gaps around:

- Door and window frames;
- Architraves and skirting boards;
- Ceiling cornices;
- Construction joints;
- Floor boards;
- Wall penetrations (such as pipes);
- Exposed rafters and beams;
- Inbuilt heaters and air conditioners; and
- Between masonry walls and other materials.

Ducted evaporative cooling systems

The ceiling outlets of ducted evaporative cooling systems can allow heated air to escape in winter. If there are gaps, heated air can escape around the outside of the outlets. Heated air can also escape through the louvers into the ductwork, where it can then escape into the roof space through holes, tears or gaps due to loose joins.

If the outlet from the evaporative cooler unit is not sealed off effectively with an automatically closing damper during the winter months then heated air can also escape through the evaporative cooler itself. While automatically closing dampers are available on some evaporative cooler models, these may not completely eliminate the air leakage. Special covers are now available which can be placed over the evaporative cooler’s ceiling outlets in winter to eliminate the air leakage through the louvers (and therefore the ductwork and evaporative cooler) (see Figure 7.23). It is important to ensure that the covers are suitable for the type and size of the ceiling outlets used with your evaporative cooling system. It may also be necessary to use caulking compounds to seal around the outside of the ceiling outlet.

In addition, winter covers are available for some roof mounted evaporative coolers to reduce winter heat losses through the evaporative cooling unit (see Figure 7.24).
Maintaining air quality in houses with low air leakage

A completely airtight home is not desirable as a minimum level of ventilation is necessary to replace used internal air that contains odours, carbon dioxide, water vapour and contaminants. This section provides you with practical solutions to maintain indoor air quality while minimising unwanted air leakage.

Indoor air contaminants

Indoor air quality depends on the activities, furnishings and building materials in the home which may produce air contaminants and the degree to which these contaminants can escape. Many building materials and household goods can emit chemicals which dissipate over time. Natural ACH rates of 0.5 air changes per hour or lower are not adequate to completely remove contaminants in all situations.

Heaters which burn internal air (e.g. solid fuel and some gas heaters) can be provided with a separate external air supply to avoid draughts and maintain indoor air quality. These require a damper to be closed off when not in use (see Figure 7.25). Ventilation is essential when using unflued LPG gas heaters.

Use your house wisely

While eliminating unwanted air leakage will lower your heating bills, it is important not to lower air leakage to the extent that indoor air quality is compromised. Some of the houses in the SV study did note that cooking smells lingered for longer when the air leakage sites were blocked or noticed a slight increase in condensation. In most cases taking simple and practical steps can avoid these issues:

› Remove moisture at the source by using exhaust fans when showering and range hoods when cooking. Make sure you leave these on for a little while after the activity is finished to ensure all contaminants and moisture have been removed. Make sure exhaust fans are placed as close as possible to the source of the contaminant to increase their effectiveness.

› Regularly open your windows and doors on mild days when you don’t need to heat or cool to ventilate the house. This helps to remove any leftover contaminants that were not removed by exhaust fans.

Heat recovery ventilators

The ultimate solution to indoor air quality is to use a Mechanical Heat Recovery Ventilator (MHRV). To use an MHRV you must first seal all leakage sites in the home. A MHRV draws fresh air from outside through a heat exchange system that warms (in winter) or cools (in summer) the incoming air with air from within the house. This means that fresh air can be introduced with much lower net heat loss. MHRVs must be used to obtain Passivhaus accreditation.

MHRV systems can also contain filters to eliminate contaminants from outdoor air such as pollen and pollution and dehumidifiers to help eliminate mould. MHRVs can be integrated with your existing ducted heating system. While they are not cheap, they are an excellent solution for highly efficient houses and cases where the occupants suffer from allergies and respiratory conditions.

Further information

House ventilation for reducing cooling energy use

Most people understand the benefits of opening windows in summer to help cool your house down after a cool change has come through. The design of your house and the positioning of the openings can increase ventilation to let in cool air and help you lower your cooling energy costs. This section explains the principles of good design to promote cross flow ventilation.

Ventilating your house can cool your house in two ways: by replacing the warmer air inside with cooler air from outside, and by creating air movement through the house. This air movement helps you to feel cooler because it increases the body’s heat loss by evaporation. It is particularly effective in climates with high humidity levels. At air speeds of between 0.5 to 1.0 m per second the body will feel 2–3°C cooler in 25°C air.

NatHERS House Energy Rating Software includes comprehensive modeling of the impact of air movement induced by opening windows. They calculate the air speed through each room and how much more comfortable this air movement will make you feel.

NatHERS tools do not turn on cooling if comfort can be maintained just by opening windows. In places like Darwin or Brisbane, NatHERS tools will open windows from two thirds to half the time to maintain comfort through air movement rather than use air conditioning.

Because summer humidity levels are lower in places like Victoria this air movement effect is less important. In Victoria the main advantage of ventilating the house is to remove heat by opening windows to let in cooler air after a cool change. This is also modeled by NatHERS tools.
Principles of cooling by ventilation

Enhancing ventilation using the stack effect
Using openable clerestory windows can allow you to easily get rid of warm air that has risen to the ceiling. When the outside air is cooler, windows can be opened, and warm, less dense air rises and passes out through the high opening. The warm inside air is replaced with cooler air from outside drawn in through a relatively low opening. This cool air absorbs the heat of the building and carries it outside (see Figure 7.26).

Cross-ventilation
Cross-ventilation utilises differential wind pressure. When the air outside is cooler, windows on opposite sides of the home can be opened. Cool air enters on the windward side and passes out on the other side, replacing warm inside air with cool outside air.

Mechanical ventilation
Even if you can’t improve the cross ventilation of your home you can still ventilate your house using mechanical ventilation systems. New residential mechanical ventilation products with substantial air flow capacity are now available that will allow you to achieve an air change rate of 5 per hour to help you take advantage of a cool change.

Ceiling fans
Ceiling fans can provide additional air movement in summer if your ceiling height is adequate to have them installed (see Figure 7.28). Overhead fans circulate large volumes of air and assist evaporative heat loss from the body. They are an economical and efficient way of creating cool breezes. In hot summer conditions, increased air movement can make you feel up to 3°C cooler. NatHERS tools also model the impact of ceiling fans and the air movement they provide.
Design for good ventilation

Determine where the natural cooling breezes come from

The direction of prevailing winds for each month can be sourced from the Bureau of Meteorology website http://www.bom.gov.au under the search term ‘wind roses’. In and around Melbourne, the cooling summer breezes tend to come from the south.

Determine how local conditions modify the direction of the breeze

Valleys and large land masses can direct or deflect wind away from prevailing paths. Buildings, tree belts or other tall features can cause wind shadows, which cause pockets of fairly still air. Such obstruction can impede ventilation and should be taken into account in house design.

Wind shadows between the obstruction and the immediately adjacent building are created for a distance of about three to seven times the height of obstruction (see Figure 7.29).

Locate and determine the size of openings that will admit cooling breezes

Allow for both an inlet and outlet opening on opposite sides of the home and a short unrestricted path. With an inlet only opened, the air speed inside the building will be only 4% of that on the outside (see Figure 7.30).

Houses ventilate best when there are small openings facing the cooling breeze (windward side) and large openings on the opposite side (leeward) of the house. Wind speed through the house will be 25% higher in this condition than if the opening on each side were the same. (see Figure 7.31).

Plan the interior so that air can flow freely

The more direct the path for air to move through a building, the greater its speed and effect to cool. The planning of partitions and openings should ensure that pockets of still air are not created (see Figure 7.32). Passages that have openings to the outside can create paths for air movement to adjoining rooms.
08 / Good Design Saves Money

All new housing in Victoria must meet a 6 star minimum performance standard. This chapter shows how following the principles shown in the Energy Smart Housing Manual can help you comply with regulations, exceed minimum standards and reduce your construction cost.
Good design saves money

Using a NatHERS tool early in the design process of your house will allow you to optimise the design and thermal performance of your house and this will help to reduce additional construction costs needed for compliance with minimum building fabric energy efficiency regulations in the National Construction Code. It is therefore important to get a NatHERS thermal performance assessor involved early in your design process. The additional rating costs involved in getting ratings early in the design process will usually be easily recouped in lower construction costs.

Passive Solar House

The house plan below shows the plan of a house which is designed to implement the passive solar principles outlined in this manual. Passive Solar Houses are well insulated, have north facing windows in most rooms and utilise high thermal mass materials such as a concrete slab on ground to store the heat from the sun during the day in winter, and have well shaded windows in summer.

Key features of the plan include:

› Main rooms all have north facing windows.
› Entry provides air lock to protect from cold winter winds.
› Utility areas like bathrooms and ensuites protect habitable rooms from hot east and west summer sun.
› Bedrooms on the south have north facing clerestory windows.

Figure 8.12 shows the view from the north.

Typical House

The house plan below has not followed the principles outlined in this manual.

The main living areas have no north windows. The lounge has a large area of south window which loses lots of heat in winter, and two west windows which will make it hot in summer. The Kitchen/Family room has only east facing windows which do not let in as much heat as north windows in winter and will heat up the house in the morning on hot summer days. While two of the bedrooms both have north windows which will make them warm on cold days, but if these bedrooms are not heated during the day the heat gain from the north windows delivers little energy saving benefits.

Figure 8.13 shows the view from the east looking toward the Kitchen/Dining area.
Comparing the two houses at 6 stars

Both houses are assumed to be located in the south eastern new home growth corridor in Melbourne. They are approximately the same size and have a similar area of windows.

Both houses are constructed with Brick Veneer walls on a waffle pod insulated concrete slab floor. Both houses have weatherstripped their doors and windows and use dampers to close off exhaust fans when not in use.

Achieving 6 stars in the Passive Solar House

The Passive Solar House doesn’t have to make many modifications to get to 6 stars:

- All windows can be single glazed and have aluminium frames.
- Brick Veneer walls can be insulated with only double sided reflective foil and no added bulk insulation.
- Ceiling insulation with an R value of 3.5 is needed.

Achieving 6 stars in the typical house

The Typical house has to do a lot more to get to 6 stars:

- All windows in living areas must be double glazed and all have aluminium frames.
- Brick Veneer walls need bulk insulation with an R value of R2.0.
- Ceiling insulation with an R value of 4.1 is needed.

Both houses use the same amount of energy because both achieve 6 stars. But the typical house will cost more to build due to the need for double glazing and higher insulation levels. Construction costs for the Passive Solar House could be as much as $2,000 lower.

Potential to go further

It is important to remember that 6 stars is just the minimum requirement. Many people would like to go further and achieve excellent performance. The Passive Solar House has the potential to achieve a much higher rating. To see just how far each house could go the following modifications were made to each:

- All windows double glazed with argon filled low-e coated glazing.
- Ceiling insulation increased to R5.0.
- External wall insulation increased to R2.7 with an anti-glare reflective wrap.

The typical house is able to achieve a rating of 7.2 stars. The Passive Solar is almost a star better at 8.1 stars. The 8.1 star Passive Solar design uses around 40% less heating energy and 20% less cooling energy over the course of the year compared to the 7.2 star typical house.

Good design make sense

Whether you want to achieve compliance with 6 stars for the least cost or want to make your house has as efficient as possible, applying the principles described in the Energy Smart Housing Manual will help you to achieve your goal.